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 Malaria parasites accept uncertain, inconsistent life span breeding through 

vectors of mosquitoes stratospheres. Thousands of different transcriptome 

parasites exist. A prevalent Ribonucleic acid sequencing (RNA-seq) 

technique for gene expression has brought about enhanced identifications of 

genetical queries. Computation of RNA-seq gene expression data transcripts 

requires enhancements using analytical machine learning procedures. 

Numerous learning approaches have been adopted for analyzing and 

enhancing the performance of biological data and machines. In this study, a 

Genetic algorithm dimensionality reduction technique is proposed to fetch 

relevant information from a huge dimensional RNA-seq dataset, and 

classification uses Ensemble classification algorithms. The experiment is 

performed using a mosquito Anopheles gambiae dataset with a classification 

accuracy of 81.7% and 88.3%. 
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1. INTRODUCTION  

Next-generation sequencing technology high-throughput has produced large wide-ranging datasets, 

this gigantic expanse of data authorizes biologists in examining and realizing challenging transcriptions of 

genes, for example, relatives in diseases and RNA for example contagions (malaria), cancer, transmissible, 

genetics, biological, and others [1]. Blood-sucking mosquitoes such as mosquito anopheles with key vectors 

of malaria Plasmodium falciparum originates from Africa. Anopheles mosquitoes are a deadly malaria 

parasite, responsible for demises of thousands. Antimalarial suppositories spread, state-of-the-art 

antimalarials treatment upsurges, fetching for ground-breaking medications requires improved consideration 

of these living organisms. Mosquito parasite tolerates precise parameter of expression of genes takes a 

massive query, making an enhanced systematic predictive model for malaria vector transcripts [2-3]. 

Approachable revealing genetic inquiries have been made in RNA-Seq study by unfolding a cautious 

purposeful biological strategy by enhancement of sequencing study. RNA-Seq data necessitates the removal 

of the high-dimensionality curse, such as; disorders, sounds, recurrence, unconnected, severance, unsuitable 

data, and others [4]. Current skills consist of enhanced methods in developing ground-breaking medical care 

models, for example, keen human well-being treatment systems, enhanced treatments, among other detects of 

ailments and complaints [5]. 

Some machine learning approaches have been conventional in the recent era with persuasive 

novelties for studying the enormous sum of the RNA next-generation sequencing gene expression data over 

https://creativecommons.org/licenses/by-sa/4.0/
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studying the biologically applicable outlines [6]. Researchers have extensively worked on machine learning 

methods for RNA-Seq data expression having rates of success variable [7, 8]. Computational approaches 

have been useful on an enormous genomic dataset of publics diseases, genes in charge of the presence of 

conditions can be distinguished. Several measures have been observed by Differentially Expressed Genes 

(DEG). In identifying the difference between genes contracted from the human genome, the machine learning 

process is vital. Quite a lot of machine learning approaches proposed in analyzing and classifying gene 

expression profiling of many emulated diseases. Profiling of gene expression data and its approaches 

utilizing some machine learning are of significant. A lot of investigations have been carried out, with existing 

investigational predictable openings [5]. Blood-based gene expression disease signs and machine learning, to 

detect transcriptions for classification [9], with RNA data from omnibus gene expression data with machine 

learning tools and algorithms are projected. RNA-Seq data dimensionality reduction, clustering and 

classification have been proposed, directing mutual evaluation, the importance of procedures, occurring 

recently as predominant variations, with direct and indirect approaches with RNA-seq data dimensionality 

reduction methods, by the statement of RNA-seq data dimensionality reduction procedures [10]. 

A Genetic algorithm dimensionality reduction feature selection procedure is carried out, to draw and 

analyze high dimensional gene expression data, Ensemble classification algorithm approaches are carried out 

to regulate discrete genetic backgrounds that distributes classification accuracies which suggestable for 

effective prediction and detection approaches of innovative genes for malaria contagions in human. 

 

 

2. METHOD PROPOSED 

The planned framework for this study is tabulated in Figure 1, vital knowledge in predicting 

machine learning burden on high-dimensional gene expression RNA-Seq data, into subordinate dimensional 

dataset is proposed. This study fetches out imperative data in a specified dataset by employing Genetic 

Algorithm feature selection process as a phase, Ensemble classification algorithms are linked to estimate the 

performance of the RNA-seq malaria vector dataset.  

 

 

 

 

 

 
Figure 1. Proposed framework 

 

 

A supervised learning procedure for RNA-Seq gene ranking huge ensembles group of measured 

RNA-Seq genes, carried out a mutable rank procedure made from random forests classification algorithm, 

using Autoencoder variations and regressors to abstract levels of 12 RNA-Seq cancerous datasets holding 

about a thousand samples. A concealed supervised learning-based feature selection procedure in RNA-Seq 

training was demonstrated and conferred using feature selection approaches on the gene expression dataset 

investigation [11]. A supervised classification RNA-Seq data model was presented using a simplified 

procedure with an infinite accurate classification of single cells, merging independent feature selection 

dimensional reduced model and machine learning procedure. Sc-Pred RNA-seq dataset from pancreatic 

muscle, mixing dendritic cells, colorectal tumour material elimination, and mononuclear cells were applied 

and presented a high-performance accuracy [12]. RNA-DNA machine learning investigation showing low 

genome expressions influencing PAH ailment was proposed, using an advanced feature selection and 

enhanced machine learning procedure for classifying irrelevant but very beneficial genes, the results 

displayed clusters of unrelated expression genes that reveal predicting and distinctive transformed PAH [13]. 

Classification of gene expression gastrointestinal tumor dataset using deep learning approach was proposed, 

using about 60,000 genes from 334 gastrointestinal tumor patient’s data, PCA, heatmaps, and the CNN 

algorithm were proposed using scientific, and RNA-seq gene expression data investigation and classification 

accuracy of 95.96% and 50.51% were achieved [14]. An RNA-Seq disclosure of concealed transcriptions in 

malaria parasites was proposed by unfolding the dissimilarity of an RNA-seq process to free difference of 

transcripts for different mosquitos and revealed hidden distinct transcriptional signs [15].  

Classification with ensemble machine learning procedure for cancerous data expression was 

proposed using C4.5, bagging and boosting ensemble supervised machine learning measures cancer data 

classification on seven open-sourced malicious microarray data, the bagging and boosting ensemble learning 

classification approach showed a better performance accuracy [16]. An investigative ensemble classification 
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method for gene expression for cancerous data was proposed using a Recursive Feature Elimination 

association feature selection approach to fetch important features, an Adaboost ensemble classification 

algorithm was used for classification, and the outcome displayed a relevant improvement. Cancerous gene 

expression data classification was done using an ensemble classification method; the performance and 

outcomes of the result showed a reduced amount of dependent on originalities of a single training dataset 

[17]. A metaheuristics technique for fetching genes and RNA/DNA data classification by briefing existing 

advances of metaheuristic-based methods in the embedded technique of feature selection approach was 

proposed, emphasizing helpful and integrating problem-specific data relevance into the examination 

operatives of developments. A ranking coefficient of linear SVM classifier was used in the local operative 

investigation for feature selection and classification [18]. A fault investigation for training engines using GA 

and classification learners, the approach lessens the computational complication and advances the accuracy to 

about 97% [19]. Tree model enhancement for classifying certain ensembled features was proposed using an 

ensemble-based feature selection, random trees and wrapper-based feature selection system in developing a 

classification model, and the ensemble data classification procedure initiates a subclass using the bagging, 

wrapper dimensionality reduction method, and random trees. This procedure removes the unconnected 

features and picks the best features for classification with a probability weighting value. The study was 

evaluated and compared with a classification accuracy of 92% [20]. An ensemble-feature selection 

implementation procedure using R-package tool was proposed, several feature selection techniques were 

combined with regularized outputs to a quantifiable ensemble ranking, feature selection procedures were 

combined, and used [21]. 

 

 

3. RESEARCH METHOD 

High dimensional data investigations have been discussed extensively, a Genetic Algorithm and 

Ensemble classification algorithm is proposed using an RNA-Seq data consisting of 2457 instances with 

seven attributes of western Kenya, mosquito’s gene data [22] with its profile transcript contents, RNA-Seq 

genes, transcript variations of deltamethrin- resistant and vulnerable Anopheles gambiae Kenyan mosquitoes 

which is an openly accessible data on figshare.com [23-24], it is tabulated in Table 1. MATLAB 

experimental tool is used to carry out the experiment, GA is proposed and used to fetch relevant features. The 

selected were classified using the Ensemble algorithm [25].  

 

 

Table 1. Dataset structures 
Dataset Attributes Instances 

Mosquito Anopheles Gambiae 7 2457 

 

 

3.1. Genetic algorithm 

GA is a proficient method for investigating suitable features from high dimensional datasets, and 

predominant GA are wrapper-based feature selection methods. Quite a lot of limitation procedures for 

genetic algorithm exists, where alteration and crossover operatives persist and commonly connected to binary 

constraint values. Appropriate features are recognized using a genetic algorithm [26]. The RNA 

has N number of features representing features with values 0 and 1 as selected and unselected, 

correspondingly. Addressing the importance of features, GA is used in finding the ideal feature subset by 

means of the nominated figure of features for complex classification presentation. The general construction 

of the GA is defined in Algorithm 1 below by adopting [27]: 

 

Algorithm 1. Genetic algorithm 
Require: Initialize the parameters nPop = m, tmax, t = 0; 

Ensure: Optimal feature subset with the highest fitness value. 

 1: while (t<=tmax) do 

 2: Create pop m, tmax; 

 3: For k = 1 to m do 

 4:  Parents [m1, m2] = system selection (m, nPop) 

 5:  Child = Xor[m1, m2] 

 6:  M u = mutation [Child} 

 7: End for 

 8: Replace m with Child1, Child2, …, Childm 

 9: t = t+ 1; 

 10: End while 

 11: Store the Highest fitness value; 

https://www.sciencedirect.com/topics/computer-science/ensemble-approach
https://www.worldscientific.com/doi/10.1142/S1469026819500202#S1469026819500202FIGF5
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m is the population size, r is a random number lying flanked by 0 to 1, signifies the nominated 

chrome or unselected feature with a threshold δ set value to be 0.5, and α is the threshold number of features 

nominated. The significant problems of the precise method are selecting the maximum fitting features from 

the predictable datasets. 

 

3.2. Ensemble classifier 

Ensemble classifiers are trained using distinct sectors of the training data, diverse constraints of the 

classifiers, or varied sectors of features as in a model of random subspace [28]. Ensemble classifier includes 

integrating outcomes of numerous classifiers to yield a final result; it is regularly used for the acquisition of 

extremely accurate results. Ensemble classifiers are quite mutual in machine learning problems and can be 

active in the bioinformatics field. The classification result is attained by the inclusion of a choice of 

individual classifier [29]. Ensemble approaches are machine learning techniques combines decisions to 

advance the performance of the general classification. Several terms have been discovered in the literature to 

signify comparable connotations such as; multi-strategy learning, aggregation, multiple integration 

classifiers, classifier synthesis, grouping, committee, and so on. Ensemble classifier takes complete improved 

presentation than discrete based classifiers. The efficiency of ensemble approaches is extremely dependent on 

the unconventionality of fault devoted by the discrete learner. Ensemble approaches performance hinge on 

the accuracy and variety of the base learners, and ensemble classification has common techniques; bagging 

and boosting.  

Bagging (bootstrap aggregating) employs the training data by arbitrarily changing the unique T 

training data by N items. The additional training sets are called bootstrap duplicates with some occurrences 

unappealing even though appearing consecutively. The classifier C*(x) is built by combining Ci(x) where 

each Ci(x) has an equivalent vote.  

AdaBoost (Adaptive Boosting) technique affects the training data. Originally, the procedure allows 

all instance xi with equal weight. In separate iteration i, the knowledge procedure reduces the weighted error 

on the training set and yields a classifier Ci(x). The weighted error of Ci(x) is calculated with use to inform 

the weights on the training instances xi. The weight of xi rises, giving to its effects on the classifier’s outcome 

that allows a high weight for a misclassified xi and a small weight for an acceptably classified xi. The 

concluding classifier C*(x) is built by a weighted vote of the discrete Ci(x) rendering to its accuracy built on 

the weighted training set [30-33]. 

Implementing Kamran et al. [24], they showed how a boosting algorithm works for datasets, then 

trained by multi-model designs (ensemble learning). These advances resulted in the AdaBoost (Adaptive 

Boosting). Presume to construct Dt such that D1(i) = 
 

 
 given Dt and ht: 
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Where    states to the normalization factor and    is as follows; 
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Basic ensemble classification techniques:  

Weighted Averaging (WA); Averaging and Max Voting (MV).  

Max Voting (MV) exists [31] Ensemble learning has three combination advanced techniques; Stacking 

(STK); Blending (BLD); Bagging (BAG), and Boosting (BOT) [32-37]. 

 

3.3. Performance evaluation 

Performance evaluation of machine learning technique entails validation metrics such as a confusion 

matrix, used for analyzing classification models features, discovering the classified illustrations from the 

given model of tested dataset model samples [5] using the performance metrics formulas [22, 27].  

 

3.4 Applications 

Gene analysis expression projects an improved approach in identifying RNA-Seq data, fetching for 

relevant essential genes for developing applications like treatments, genes and drugs discoveries, diagnosis, 

classification of cancerous diseases, malaria, fever, and so on. Finding the machine learning data designs 
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requires a great algorithm and tools used by several experiments. MATLAB tool is used to carry out the 

experiment [38-39]. Predicting RNA-Seq technology using MATLAB tool, malaria vector data, and 

computer resolution conformation uses iCore2 processor, 8GB RAM size, 64-bit System and MATLAB 2015 

tool. 

 

 

4. RESULTS AND DISCUSSION  

RNA-Seq innovation with Mosquitoes Anopheles Gambiae data having 2457 susceptible and 

resistant genes as shown in Figure 2 below is implemented by using Genetic algorithm on the data to reduce 

the curse of dimensionality and fetch the optimal subset of data, remove uncorrelated attributes, and choose 

determined variance with a reduced number of subset features in the variable. The GA gives important gene 

data for a suitable study. The ensemble classification algorithm is used. Using GA as a feature selection 

method, with a threshold of 0.5, 708 optimal subset features of genes were significant. 

The classifier uses an ensemble classification learning evaluation procedure, the training and testing 

segments use 10-fold cross-validation for eliminating selection partialities using MATLAB. Evaluation 

outcome is constructed using the computational time and performance metrics [27]—classification 

performance with Ada-Boost and Bagging Ensemble classification models, with 93.3% and 95% accuracy 

respectively. The result procedures are shown in Figures  

 

 

 
 

Figure 2. Loaded data on MATLAB environment 

 

 

GA is employed to fetch related components from the dataset, as shown in figure two, selected 

features are classified using an ensemble algorithm. The result of the confusion matrix is shown in the figures 

beneath. The confusion matrix shows a resolution to the performance metrics Ada-Boost and bagged 

ensemble classification algorithms are used and achieves an accuracy of 81.7% and 88.3% respectively. 

Figure 3 and Figure 4 shows the confusion matrices used in evaluating the performance of the experiment; it 

comprises of the True and False Positives and Negatives. 

Testing the performance of RNA-Seq data [39], with 2457 gene features, GA was employed to 

eliminate irrelevant features in the data, 708 features were carefully chosen as a subset in the data. The 

selected features are passed into the ensemble classification model envisage their performance. The outcome 

proves the efficiency of machine learning ability on genes, validating the method, the results revealed in 

Table 2 with Bagged Ensemble outperforming the Adaboost ensemble algorithm in terms of accuracy with 

88.3% to 81.7%. 
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Figure 3. Confusion matrix for classifying mosquito RNA-Seq data with ada-boost ensemble classifier 

TP=35; TN=14; FP=7; FN=4 

 

 

 
 

Figure 4. Confusion matrix for the classification of mosquito RNA-Seq data using bagged ensemble classifier 

TP=35; TN=18; FP=3; FN=4 

 

 

Table 2. Performance metrics table for the confusion matrix 
Performance Metrics Ada-Boost Ensemble Classification Bagged Ensemble Classification 

Accuracy (%) 81.7 88.3 

Sensitivity (%) 89.7 89.7 

Specificity (%) 90.6 85.7 
Precision (%) 83.3 92.1 

Recall (%) 89.7 92.1 

F-Score (%) 86.4 92.1 
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5. CONCLUSION 

In this study, an improved and efficient prediction and analysis of malaria ailment in human is 

carried out using machine learning procedures such as genetic algorithm and Ensemble algorithms. This 

study analyzed and evaluated the performance, and the showed the obtained results of the employed 

Classification algorithms, the bagged ensemble classifier outperforms the Ada-boost. The improved 

classification of malaria vector data is carried out with other numerous works, and the results show 

dimensionality reduction model with Genetic Algorithm feature selection approach, is helpful and can 

advance the classification results such as ensemble. Investigating further on feature selection models and 

algorithms will be of great value to get a suitable model for enhancing RNA-Seq technology. 
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