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    Chapter 4   

 In Silico Models for Drug Resistance       

     Segun   Fatumo      ,    Marion   Adebiyi   , and    Ezekiel   Adebiyi      

  Abstract 

 Resistance to drugs that treat infectious disease is a major problem worldwide. The rapid emergence of 
drug resistance is not well understood. We present two in silico models for the discovery of drug resistance 
mechanisms and for combating the evolution of resistance, respectively. In the  fi rst model, we computa-
tionally investigated subgraphs of a biological interaction network that show substantial adaptations when 
cells transcriptionally respond to a changing environment or treatment. As a case study, we investigated the 
response of the malaria parasite  Plasmodium falciparum  to chloroquine and tetracycline treatments. The 
second model involves a machine learning technique that combines clustering, common distance similarity 
measurements, and hierarchical clustering to propose new combinations of drug targets.  
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 Controlling infectious diseases is becoming more dif fi cult as a 
result of the emergence of resistance to available drugs on the mar-
ket. Drug resistance has emerged in the most dangerous diseases 
affecting humans, including malaria, tuberculosis, and HIV infec-
tion. These diseases have increased the disease burden particularly 
in developing countries, especially in Africa. 

 In this report, we present two in silico models, one for the 
discovery of drug resistance mechanisms and another for combat-
ing the evolution of drug resistance. Although we have adapted 
and developed these models for malaria research, they can be 
employed in the study of other infectious diseases. The  fi rst model 
has not been previously published. A model similar to our second 
model has been developed for the treatment of gastrointestinal 
stromal tumor (GIST)  (  1  ) . With tumors as heterogeneous as GIST, 
up to  fi ve different types of secondary mutations can occur in the 
same patient. The aim is not only to wait for mutations to emerge 
before selecting the right compound but also to predict and group 
mutations according to likelihood, enabling clinicians to prescribe 
an appropriate drug as soon as a patient displays a particular mutation. 

  1  Introduction
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This dynamic multidrug-targeted prevention technique has been 
proposed in the treatment of chronic myeloid leukemia and the 
positive results obtained with the newly introduced drugs nilotinib 
and dasatinib suggested that a combination of two or three kinase 
inhibitors, when carefully selected to cover all known resistant 
mutations, could shut off all mechanisms of escape. 

  An improved knowledge of genomics and of the structure of indi-
vidual proteins has helped us increase our understanding of bio-
logical systems. However, insight into functional interactions 
between the key components of cells, organs, and systems helps us 
in understanding their physiology. Perturbations in these interac-
tions lead to various diseases. We therefore must compute these 
interactions to determine the characteristics of the system when it 
changes from the healthy to the diseased state. With the develop-
ment of powerful computing hardware and algorithms and an 
increasing number of pathway databases and models of cells, tis-
sues, and organs, we can now explore functionality in a mathemati-
cal manner from the level of genes to the physiological function of 
whole organs and regulatory systems  (  2  ) . The simpli fi ed mathe-
matical representation of the dynamics of a system is called model-
ing  (  3  ) . Modeling has become an important research area in 
biology and bioinformatics. We use models to explain experimental 
observations. Hence, we can also use them to test a hypothesis 
about biological function. We also use models for storing experi-
mental data on biological molecules and processes in databases so 
as to analyze them  (  4  ) . While modeling of individual reactions has 
been under way for a long time, we have only recently begun to 
appreciate the importance of modeling complex reactions, bio-
chemical pathways, and networks  (  5  ) . Because experimental data 
on biochemical reactions are insuf fi cient and dif fi cult, expensive, 
and time consuming to obtain, computational models of biological 
networks help in  fi lling this data gap. We use computational mod-
els both for simulation and for metabolic engineering  (  2  ) . Using 
computational simulation of complex biological networks, we can 
not only validate the conclusions drawn by experimental studies 
but also propound fresh hypotheses for further experimental vali-
dation. This iterative process of experimental studies and computa-
tional simulation has helped us develop highly sophisticated and 
realistic models, e.g., models of heart cells  (  6  ) .   

 

  The advent of DNA microarray high-throughput pro fi ling 
experiments has allowed us to explore a major subset or all genes 
of an organism under a variety of conditions such as alternative 
treatments (drug-in fl uenced condition vs. condition in fl uenced by 

  1.1  In Silico 
Modeling

  2  Materials and Concepts

  2.1  DNA Microarray



41In Silico Models for Drug Resistance 

factors considered normal), mutants, developmental stages, and 
time points. For example, the technique enables us to classify tumor 
samples  (  7  ) , to de fi ne small sets of potential marker genes to distin-
guish leukemia  (  8  ) , and to discover regulatory mechanisms  (  9,   10  ) . 
For example, without prior information, the structure and func-
tion of the network that regulates the SOS pathway in  Escherichia 
coli  was elucidated via transcription pro fi les  (  11  ) .  

  Biochemical investigations especially in the past 40 years have 
revealed an increasingly consistent image of cellular metabolism; 
see, for example, Berg et al.  (  12  ) . This is especially true for less 
complex organisms such as  E. coli   (  13  ) . However, this approach 
used alone provides a rather static image of the cell and thus inves-
tigations have been performed to discover cellular adaptation pro-
grams in response to changing environments such as nutrient 
excess, starvation, and other stresses  (  14  ) . These observations origi-
nally followed linear interaction and reaction cascades; studies 
investigated single knockouts and tediously tracked transcripts for 
single genes, compounds, and proteins that might be in fl uenced; 
see, for example, Neidhardt  (  15  ) . By combining metabolic network 
data and microarray data, data on the physical and chemical interac-
tions of proteins can be integrated. For example, knowledge of 
protein–protein interaction gained from the use of high-through-
put techniques  (  16  )  applied to the analysis of gene expression data 
revealed novel regulatory circuits  (  17  ) . Moreover, knowledge of 
biochemical network interactions has been used to support the 
clustering procedure for gene expression pro fi les of yeast  (  18,   19  ) .  

  BioCyc  (  20  )  is a collection of more than 200 pathway/genome 
databases, containing whole databases dedicated to certain organ-
isms. For example, EcoCyc, which falls under the giant umbrella of 
BioCyc, is a highly detailed bioinformatics database on the genome 
and metabolic reconstruction of  E. coli , including thorough 
descriptions of various signaling pathways. The EcoCyc database 
can serve as a paradigm and model for any reconstruction. 
Additionally, MetaCyc, an encyclopedia of metabolic pathways, 
contains a wealth of information on metabolic reactions derived 
from more than 600 different organisms, including  Plasmodium  
and  Homo sapiens .  

  Pathway Tools is a bioinformatics package that assists in the con-
struction of pathway/genome databases such as EcoCyc  (  21  ) . 
Developed by Peter Karp and his associates at the SRI International 
Bioinformatics Group, Pathway Tools comprises several separate 
units that work together to generate new pathway/genome data-
bases  (  20  ) . First, PathoLogic takes an annotated genome of an 
organism and infers probable metabolic pathways, allowing 
the creation of a pathway/genome database for the organism. 

  2.2  Biochemical 
Metabolic Network

  2.3  BioCyc: 
A Collection of 
Biochemical Pathway 
Databases

  2.4  Pathway Tools
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Pathway Hole Filler can then be applied to predict likely genes to 
 fi ll “holes” (missing steps) in predicted pathways. Thereafter, the 
Pathway Tools Navigator and Editor functions let users visualize, 
analyze, access, and update the database. Thus, by using PathoLogic 
and encyclopedias such as MetaCyc, an initial fast reconstruction 
can be developed automatically, and then, using the other units of 
Pathway Tools, a detailed manual update, curation, and veri fi cation 
step is possible.   

 

 In the  fi rst model, we sought to reveal subgraphs of a biological 
interaction network that show substantial adaptations when cells 
transcriptionally respond to a changing environment or treatment. 
As a case study, we investigated the response of the malaria para-
site  Plasmodium falciparum  to chloroquine and tetracycline 
treatments. 

 This work was designed to unveil the mechanisms that culmi-
nated in the widespread resistance of this parasite to these drugs. 
We hope that our results will be useful in developing combinations 
of antiresistance drugs for malaria patients. Simple clustering of 
gene expression on the metabolic network of  P. falciparum  can 
yield subgraphs (clusters or features) that are either stimulated or 
repressed when the organism attempts to resist a particular treat-
ment given to a malaria patient. König and Eils  (  22  )  and König 
et al.  (  23  )  demonstrated a similar mechanism with tryptophan-
treated cells and in the heterofermentative bacterium  E. coli  in 
response to oxygen deprivation  (  24  ) . 

 Following this line of work, we made the discoveries reported 
here. Before we indicate these, we note that the microarray data-
sets that we analyzed for tetracycline and chloroquine do not con-
tain many differentially regulated reactions. The possibility remains 
that studying drug resistance mechanisms of the malaria parasites 
at the transcriptional level of their proteins is not reliable (Karine 
Le Roch, personal communication). 

 Using the tetracycline microarray data, Dahl et al.  (  25  )  indi-
cated that tetracyclines speci fi cally block expression of the apico-
plast genome and concluded that the loss of apicoplast function in 
the progeny of treated parasites leads to a slow but potent antima-
larial effect. From the clusters we extracted, we show that this slow 
antimalarial effect is due in particular to excess glucose that is being 
made available. The fatty acid production is upregulated (beta oxi-
dation, starting at acetyl-coA) together with the farnesyl pathway, 
which is needed for cholesterol and also leads to fatty acids and 
membrane components. We also discovered important genes 
and reactions that participated in the resistance mechanism of 
 P.  falciparum  to tetracycline. 

  3  First Model: In Silico Model for Deducing Drug Resistance Mechanisms
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 From the chloroquine microarray data, we found that trypto-
phanyl-tRNA synthetase production in the apicoplast is upregu-
lated. Others have hypothesized that resistant  P. falciparum  
parasites have a mechanism for releasing chloroquine via an ef fl ux 
process  (  26,   27  ) . We prove in this work that the upregulated tryp-
tophanyl-tRNA synthetase production in the apicoplast suggests 
that this ef fl ux process may have been made possible (caused) by 
the apicoplast, the mini bacterium living inside the malaria parasite. 
We hypothesize that when our results are experimentally proved, in 
particular for the case of chloroquine, our  fi ndings may lead to bet-
ter and more cost-effective agents for eradication of the parasite 
from the human blood stream. 

  Serial Analysis of Gene Expression (SAGE) tags of chloroquine-
treated cells were obtained from the work of Gunasekera et al.  (  24  )  
and the microarray data were obtained from Gunasekera et al.  (  28  ) . 
Data from the microarray response to tetracycline treatment were 
taken from Dahl et al.  (  25  ) . Chloroquine is designed to inhibit the 
parasitic enzyme heme polymerase and tetracycline is designed to 
inhibit the cytosolic ribosomes. Additionally, Dahl et al.  (  25  )  showed 
the antimalarial effect of chloroquine against the apicoplast genome 
of  P. falciparum.  In the following discussion, “chloroquine drug 
in fl uence” refers to the microarray data on chloroquine treatment vs. 
control (in cases when this is not so, we will explicitly state this). 

 In Gunasekera et al.  (  28  ) , the parasite culture preparation and 
RNA preparation/hybridization were done as follows. Blood-stage 
 P. falciparum  parasites were maintained in vitro at 37°C in RPMI 
1640 (Roswell Park Memorial Institute) medium (Invitrogen, 
Carlsbad, CA) containing 25 mM HEPES, 0.2% sodium bicarbon-
ate, 50  m g/mL hypoxanthine, 25  m g/mL gentamicin, 5% heat-
inactivated human O +  serum, 5% bovine serum albumin (Albumax 
II, Invitrogen), and 5% human O +  blood, following standard pro-
tocols  (  29  ) . 3D7 strain parasites were used for all experiments. 
Mixed-stage 3D7 parasites were treated with 120 and 400 nM 
chloroquine for 30 min and 6 h, alongside matched controls, yield-
ing six samples (0 nM—30 min, 120 nM—30 min, 400 nM—30 min, 
0 nM—6 h, 120 nM—6 h, and 400 nM—6 h). Two separate start-
ing cultures at 8% parasitemia but with different stage pro fi les were 
subjected to each of the six treatments. The  fi rst consisted of 
approximately 1.7% rings, 2.5% early trophozoites, 3.4% late tro-
phozoites, and 0.15% schizonts, and the second contained 1.7% 
rings, 5.4% early trophozoites, 0.6% late trophozoites, and 0.15% 
schizonts. Hence a total of 12 different cell states, representing 
parasites under varying drug concentrations (three), drug expo-
sures (two), and staging pro fi les (two), were assayed. Total RNA 
was harvested at the end of each time point using the Tri-Reagent 
BD protocol (Molecular Research Center, Cincinnati, OH), labeled 
by a strand-speci fi c protocol and hybridized to a  custom-made 

  3.1  Gene Expression 
Data Used
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high-density oligonucleotide array containing 260,596 25-mer 
probes from a predicted coding sequence of the parasite genome 
and 106,630 probes from a noncoding sequence  (  30  ) . Probes 
mapping to coding sequences were used to compute gene expres-
sion levels by means of the match-only integral distribution algo-
rithm (MOID)  (  31  ) . We normalized the expression data using an 
established variance normalization method  (  32  ) . 

 The malaria parasites preparation, culture, and microarray 
analysis by Dahl et al.  (  25  )  were performed using the following 
setup.  P. falciparum  parasites were cultured in human erythrocytes 
maintained at 2% hematocrit in RPMI 1640 medium with 0.5% 
(wt/vol) bovine serum albumin in 92% N 2 , 5% CO 2 , and 3% O 2 . 
Synchrony was maintained by serial sorbitol treatments. Strain 3D7 
was used here. Parasites stably expressing green  fl uorescent protein 
fused to an acyl carrier protein apicoplast-targeting sequence 
(ACP 1 -GFP), kindly provided by Geoff McFadden  (  33  ) , were 
maintained in medium containing 100 nM pyrimethamine. Dually 
transfected parasites stably expressing a red  fl uorescent protein 
fused to an acyl carrier protein apicoplast-targeting signal and a 
yellow  fl uorescent protein fused to a citrate synthetase mitochon-
drial targeting signal (ACP 1 -DsRed and CS 1 -YFP), also kindly pro-
vided by Geoff McFadden  (  34  ) , were maintained in medium 
containing 5 nM WR99210. 

 Synchronized parasites were treated at the late ring/early tro-
phozoite stage (approximately 20 h postinvasion) with 1  m M doxy-
cycline or an equivalent volume of dimethyl sulfoxide for 24 h, until 
they reached the late schizont stage. The parasites were then subcul-
tured and maintained in drug-free medium for an additional 35 h. 
Infected erythrocytes were collected every 5 h, lysed with 0.1% 
saponin for 5 min, centrifuged at 12,000 ×  g  at 4°C,  fl ash-frozen in 
an ethanol–dry ice bath, and stored at −80°C. Total parasite RNA 
was harvested using TRIzol reagent (Invitrogen). For each sample, 
12  m g of total parasite RNA was reverse transcribed into cDNA 
containing amino-allyl-dUTP (Ambion, Invitrogen) using 
SuperScript II RNase H-Reverse Transcriptase (Invitrogen) and 
then coupled to succidimyl ester Cy5 dye (Amersham, GE 
Healthcare, Chalfont St. Giles, UK), as described previously  (  35  ) . 
Cy5-labeled sample cDNA and a reference pool of Cy3-labeled 
cDNA representing all life cycle stages were competitively hybrid-
ized to a  P. falciparum  70-mer microarray as described by Bozdech 
et al.  (  36  ) . The microarrays were scanned using a GenePix 4000B 
scanner, and images were analyzed using GenePix3 Software 
(Molecular Devices, Sunnyvale, CA), stored, and normalized using 
the NOMAD database (  http://ucsf-nomad.sourceforge.net    ). 
Expression data were log transformed and mean centered.  

  We mapped all SAGE tags to the genes they represented as follows. 
We used the standalone Blast from NCBI (  ftp://ftp.ncbi.nlm.nih.

  3.2  Mapping of SAGE 
Tags to Genes

http://ucsf-nomad.sourceforge.net
ftp://ftp.ncbi.nlm.nih.gov/blast/executables
ftp://ftp.ncbi.nlm.nih.gov/blast/executables
ftp://ftp.ncbi.nlm.nih.gov/blast/executables
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gov/blast/executables    ) and the databases of coded regions of 
 P. falciparum  and blasted all SAGE tags against all open reading 
frames selecting only the perfect matches.  

  To analyze the gene expression data above on the metabolic 
network of  P. falciparum , we used the following computational 
pipelines:

    1.    Construction of the metabolic network from PlasmoCyc 
obtained from BioCyc.  

    2.    Network clustering using a simulated annealing and a 
Kernighan–Li clustering procedure.  

    3.    Mapping gene expression data onto the reactions.  
    4.    Feature extraction using a combinatorial approach.  
    5.    Analysis of stimulated and repressed pathways.     

 We elaborate on these in the following sections. The pipelines 
explored here have been used by König et al.  (  23  ) , but these 
investigators used another feature extraction technique, the Haar 
wavelet transform. We explored a novel feature extraction tech-
nique based on a combinatorial approach. We con fi rm further the 
results obtained via the pipelines above using the Haar wavelet 
transform. This transform was done using the clusters due to the 
consecutive-ones clustering technique  (  23  ) .  

  We constructed our network from the metabolic reaction database 
PlasmoCyc. The metabolites were taken as nodes. Two metabolites 
were connected by an edge if an enzymatic reaction existed that 
had them as an educt or product, respectively  (  23  ) . We discarded 
highly connected metabolites such as water, CO 2 , and adenosine 
triphosphate. These metabolites are needed in many reactions and 
are therefore unspeci fi c in the metabolic network.  

  Here we describe how the network given above will be clustered to 
group enzymes into parts of the network with their major connec-
tions. Formally, given the metabolic network as graph G(V,E) with 
node set V (metabolites) and edge set E (reactions), the goal of our 
clustering here is to identify clusters of G where each cluster was 
given by the node set of a highly connected subgraph. Note that 
the clusters are not required to be mutually disjoint. 

 For the network clustering problem, we used both the simu-
lated annealing and Kernighan–Li  (  37–  39  )  algorithms. We then 
applied our feature extraction technique, the combinatory approach 
on both clusters obtained via these algorithms. The idea is that if 
the clusters are similar (similarly ranked) in both results, this will 
help con fi rm our  fi ndings. 

 In the following, we explain each clustering technique brie fl y. 
We adapted these algorithms to cluster the metabolic network 
described above. For more details, readers should see Kernighan 

  3.3  Model for 
Analyzing Gene 
Expression Data on 
Metabolic Networks

  3.4  Construction 
of the Metabolic 
Network from 
PlasmoCyc (BioCyc)

  3.5  Network 
Clustering Using 
Kernighan–Li and 
Simulated Annealing 
Algorithms

ftp://ftp.ncbi.nlm.nih.gov/blast/executables
ftp://ftp.ncbi.nlm.nih.gov/blast/executables
ftp://ftp.ncbi.nlm.nih.gov/blast/executables
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and Li  (  38  ) , Dutt  (  39  ) , and Brown and Huntley  (  37  ) . The 
Kernighan–Li algorithm was designed to solve the following com-
binatorial problem: given a graph  G  with costs on its edges, parti-
tion the nodes of  G  into subsets no larger than a given maximum 
size, so as to minimize the total cost of the edges cut. We explain 
the two-way uniform partition of G using Kernighan and Li; its 
application in performing multiple-way partitions (as we did in this 
work) is achieved using the two-way procedure that allows us to 
partition into unequal-sized sets. Formally, let  G ( V , E ) be a graph 
with node set  V ( G ) and edge set  E ( G ), where there is a positive 
cost  c ({ v   i  , v   j  }) associated with every edge { v   i  , v   j  } Є  E ( G ) that may, for 
example, represent the width of the corresponding link. The prob-
lem is to partition  V ( G ) into partitions  P  1  and  P  2  so that 
−1  £  │ P  1 │ − │ P  2 │  £  1, and the cost of the cut-set ∑  c ({ v   i  , v   j  }) is min-
imized, where  v   i   and  v   j   belong to different partitions. The resulting 
effect of this partitioning is that nodes that are densely connected 
to each other are placed near each other. 

 Let us take the following notations. Given a partition  P  1  and  P  2  
of  V ( G ), for each  u  Є  V ( G ), let us de fi ne the external cost  E   u   and 
the internal cost  I   u   of  u  as follows: 

   E   u   =S  v e Pi    c ({ u , v }), where  i  = 1, 2,  u  does  not  belong to  P   i  , and 
{ u , v } Є  E ( G ) 

   I   u   =S  v  Pi    c ({u,v}), where  i  = 1, 2,  u  does belong to  P   i  , and 
{ u , v } Є  E ( G ) 

 We de fi ne the  D  value of node  u  as  D   u   =  E   u   −  I   u  . This is the gain 
(reduction in the cost of the cut-set) obtained by moving  u  from 
its current partition. Thus if  u  Є  P  1  and  v  Є  P  2 , then it is easy to see 
that the gain  G   u , v   associated with swapping the pair of nodes ( u , v ) 
is  D   u   +  D   v   − 2 c ({ u , v }) if { u , v } Є  E ( G ) and  D   u   +  D   v   otherwise. 

 Assume that there are  n  = 2  m  nodes in  G , and the initial parti-
tions are  P  1  and  P  2 , with | P  1 | = | P  2 | =  m . Let  P  1  = { u  1 ,  u  2 , …,  u   m  } and 
 P  2  = { v  1 ,  v  2 , …,  v   m  }. A main data structure used in the Kernighan 
and Li algorithm is the symmetric cost matrix  C , where  C   u , v   =  c ({ u , v }) 
if { u , v }   E ( G ) and  C   u , v   = 0 otherwise. First the  D  value of each node 
 u  is computed using  C . Then, that pair of nodes ( u   i 1 , v   j 1 ) is chosen 
for swapping that has the maximum value of  G   ui , vj  . Node  u   i 1  is 
removed from  P  1 ,  v   j 1  is removed from  P  2 , ( u   i 1 , v   j 1 ), and inserted in 
an ordered set  S  of node pairs, and the  D  value of each node  u  is 
updated to re fl ect the fact that the pair ( u   i 1 , v   j 1 ) has been swapped 
between the partitions. This procedure is iterated  m  times until  P  1  
and  P  2  become empty, with the node pair ( u   ik  ,  v   jk  ) inserted in  S  in 
the  k th iteration, 1  £   k   £   m  to give  S  = [( u   i 1 , v   j 1 ), ( u   i 2 , v   j 2 ),…, ( u   im  , v   jm  )]. 
All partial sums  S   k   =å  t  = 1, … , k    G   uit , vjt   are computed, and  p  is chosen 
such that the partial sum  S   p   is the maximum. The sets of node pairs 
that are actually swapped are then {( u   i 1 , v   j 1 ), …, ( u   ip  ,  v   jp  )}, such that 
the maximum gain  G  =  S   p   is obtained. This whole process is called 
a pass. A number of passes are made until the maximum gain  G  
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obtained is 0. This is a local maxima with respect to the initial 
partitions  P  1  and  P  2 . Empirical evidence shows that the number of 
passes required to achieve a local maxima is 2–4. 

 The simulated annealing algorithm  (  37  )  for the partitional 
clustering as we required in this work was designed based on the 
following problem formation.

  Let 

   Q  be the set of all objects to be clustered (here, metabolites),  
   n = |Q|  be the number of objects in Q,  
   k  £  n  be the maximum number of clusters,  
   P = {  p : for every  i Є  {1, … , n },  p   i    Є  {1, … , k }} be the set of all 

partitionings,  
   J: P → R  be the internal clustering criterion;   

  Then 

  Minimize  J ( p ) (here, based on minimizing the total cost of the 
edges cut)   

  Subject to 

   p Є P     

 The algorithm requires the perturbation operator   d   and the 
annealing schedule (MaxIt,  T  o ,   a  ,  T  f ). The perturbation operator 
for partitional clustering switches a randomly chosen object  i  in  Q  
from one cluster to another randomly chosen cluster. A set  L  con-
tains the cluster labels used in  p . Similarly,  L  c  contains the labels 
not used in  p . The switching procedure  fi rst selects an integer m in 
the range [0,| L |]. If  m  equals 0 and there exists an unused cluster 
label (i.e., | L | <  k ), then object  i  is placed in its own singleton clus-
ter. Otherwise,  i  switches to another, existing cluster. The compu-
tational effort is made fair by allowing each run a  fi xed number of 
trial perturbations. The total number of perturbations tried in any 
run is MaxIt.NumTemp, where MaxIt is a  fi xed multiple of the 
number of objects to be clustered and NumTemp is a user-de fi ned 
constant. The solution is made accurate using a very conservative 
annealing schedule  (  40,   41  ) .  

  To do the mapping, each reaction documented in the metabolic 
network created above is linked to the gene(s) that produced the 
enzymes that catalyze it. This way, the gene expression values 
obtained from the microarray experiment (for each time point) 
replace the corresponding reaction of the metabolic network. We 
take the average reading for the case where a reaction is catalyzed 
by more than one gene. 

 The features extraction, i.e., the discovery of clusters whose 
genes are differentially expressed, in particular within different 
time points of the microarray under the control condition (no drug) 

  3.6  Mapping Gene 
Expression Data onto 
Reactions and Feature 
Extraction
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and the drug-in fl uenced condition, is carried out using a combina-
torial approach. We explain this below. 

 In the combinatorial approach we developed here, all possible 
combinations of sums and differences of expression values in each 
cluster are calculated. Note that we do not need all combinations, 
only half, because the other half can be obtained by the multiplica-
tion of −1 with one-half. We explain the process further using a 
small example: If we have a cluster with three reactions and we 
have already mapped the expression values to the corresponding 
genes of the reactions, let these expression values be 1, 2, and 3. 
Then we will have four possible combinations, namely +1 +2 +3, 
+1 +2 −3, +1 −2 +3, and +1 −2 −3. Next, if we compared (sub-
tracted) all combinations, the largest difference would be taken as 
 P  value and the clusters are ranked according to their  P  values. In 
the actual sense, the rationale behind choosing the largest  P  value 
is that it indicates the best probability that exists for the group of 
genes in the cluster in question not to be differentially expressed. 

 For each cluster, all combinations are calculated as described 
above. However, this is done for each experiment (time point) 
separately. Once all combinations are calculated, a Wilcoxon test is 
done to distinguish differences between the two different states (in 
our case control vs. drug). For each cluster, this is done for every 
calculated combination. Once all Wilcoxon tests for all clusters and 
all combinations are done, the  P  values are corrected for multiple 
testing. The clusters are then ranked according to the lowest 
 P  value that was achieved for the respective clusters.  

  The analysis of stimulated or repressed pathways was done manually 
and included an in-depth literature search. First, per cluster, we 
identi fi ed the product/function of each gene and the metabolic 
pathways in which each is functionally active. We did this using plas-
moDB. For each drug, we identi fi ed the genes functionally active in 
the pathways it targeted, expecting our pattern extraction tool to 
capture the distinct differential expression of these genes between 
the drug-induced and the control samples. We looked for cases that 
did not show this format (such cases have been found) to give us 
hints on what collection of genes differentially coexpressed might 
deactivate the effectiveness of the drug on the targeted pathway.  

  Figure  1  shows the histograms of the Wilcoxon  P  value of each 
gene expression under tetracycline (A) and chloroquine (B) treat-
ment conditions compared with its gene expression under no drug 
in fl uence. There are many more discriminative coexpression pat-
terns in the chloroquine data than in the tetracycline data. Using 
these data, we list in Tables  1  and  2  the genes that are at least 95% 
signi fi cantly differentially expressed under tetracycline in fl uence 
and genes that are at least 99.999% signi fi cantly differentially 

  3.7  Analysis 
of Stimulated or 
Repressed Pathways

  3.8  Results 
and Discussion
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expressed under chloroquine in fl uence, respectively, with their cor-
responding Wilcoxon  P  values.    

 Currently from PlasmoCyc, 691 reactions of the malaria para-
site have been curated and documented. We consider here top-
ranking reactions of the parasite whose enzymes were signi fi cantly 
differentially expressed under drug treatment conditions compared 
with their expression under no drug in fl uence for tetracycline and 
chloroquine (Tables   3   and   4  , respectively). The  fi rst and second 
columns give the reaction’s common name and unique ID in 
PlasmoCyc. The second column gives their Wilcoxon test  P  values. 
The Wilcoxon test is applicable here because we do not have the 
requirement for normally distributed data. The lower the  P  values 
of a reaction under the drug in fl uence vs. control, the more highly 
signi fi cant the possibility that the reaction may have contributed to 

  Fig. 1    Histograms of the Wilcoxon  P  values of each gene’s expression under 
tetracycline treatment ( a ) and chloroquine treatment ( b ) compared with its 
expression under no drug in fl uence. The  x -axis lists ranges of all the  P  values 
estimated and the  y -axis shows the frequency of each       
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   Table 1 
  Sixty- fi ve genes that are signi fi cantly differentially 
expressed ( P  value  £ 0.05) under tetracycline treatment   

 Gene ID  Wilcoxon  P  values 

 pla_ORF78  0.003636625 

 MAL13P1.271  0.04490200 

 MAL13P1.312  0.02048920 

 MAL13P1.304  0.001829776 

 PFI0495w  0.01004454 

 PF14_0114  0.0006560272 

 PF10_0319  0.0284207 

 PF10_0026  0.02048920 

 PF14_0582  0.02048920 

 PF14_0294  0.0004955335 

 PF14_0695  0.02048920 

 PFB0425c  0.01004454 

 PF10_0313  0.01449251 

 PFE0230w  0.01209398 

 PFC1065w  0.0284207 

 PFD1090c  0.01209398 

 pla_tufA1  0.00555959 

 PF14_0278  0.0008579387 

 PFE0755c  0.00829316 

 PFA0430c  0.03872114 

 PFI0990c  0.03872114 

 MAL6P1.93  0.01727119 

 wPF10_0061  0.01727119 

 pla_ORF470  0.03872114 

 pla_rps11  0.02418426 

 PFL0635c  0.02418426 

 pla_rps17  0.03872114 

 MAL8P1.71  0.0284207 

 PF11_0086  0.03324143 

 PF14_0175  0.02418426 

 MAL6P1.104  0.04490200 

(continued)
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Table 1 
(continued)

 Gene ID  Wilcoxon  P  values 

 PF14_0409  0.01449251 

 PFD0260c  0.003636625 

 PFL2335w  0.01727119 

 PFL0835w  0.003636625 

 PFL1125w  0.03872114 

 PFD0400w  0.04490200 

 PF13_0332  0.01209398 

 PFE1455w  0.004513053 

 MAL13P1.33  0.0284207 

 PFC0260w  0.01727119 

 PFI1500w  0.03324143 

 PFC0750w  0.002316434 

 PF10_0213  0.00555959 

 PF14_0529  0.004513053 

 PFD0845w  0.001829776 

 PF13_0332  0.00829316 

 pla_rps7  0.02418426 

 PFD0885c  0.03324143 

 pla_tRNA-Gln  0.02418426 

 pla_tRNA-Gly  0.03872114 

 PFE1375c  0.0284207 

 pla_tRNA-Trp  0.03872114 

 PFL2325c  0.03872114 

 PFD0970c  0.03324143 

 PF14_0093  0.0284207 

 MAL6P1.105  0.0284207 

 MAL13P1.261  0.003636625 

 PF11_0433  0.01727119 

 PF10_0336  0.03872114 

 PF13_0210  0.04490200 

 PF11_0289  0.03872114 

 PFL0290w  0.02418426 

 PFA0430c  0.00555959 
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   Table 2 
  Ninety genes that are signi fi cantly differentially expressed 
( P  value  £ 1.0e–5) under chloroquine   

 Gene ID  Wilcoxon  P  value 

 MAL13P1.245  7.396023e–07 

 MAL13P1.25  7.396023e–07 

 MAL6P1.181  7.396023e–07 

 MAL6P1.4  7.396023e–07 

 MAL6P1.60  7.396023e–07 

 MAL6P1.79  8.875228e–06 

 MAL7P1.104  5.177216e–06 

 MAL7P1.50  8.875228e–06 

 MAL8P1.22  7.396023e–07 

 MAL8P1.24  1.479205e–06 

 MAL8P1.97  7.396023e–07 

 PF07_0050  2.958409e–06 

 PF07_0055  7.396023e–07 

 PF07_0056  2.958409e–06 

 PF07_0111  7.396023e–07 

 PF07_0115  1.479205e–06 

 PF08_0008  7.396023e–07 

 PF08_0018  8.875228e–06 

 PF08_0021  7.396023e–07 

 PF08_0073  8.875228e–06 

 PF10_0002  7.396023e–07 

 PF10_0082  7.396023e–07 

 PF10_0132  8.875228e–06 

 PF10_0167  5.177216e–06 

 PF10_0177  2.958409e–06 

 PF10_0198  1.479205e–06 

 PF11_0021  2.958409e–06 

 PF11_0098  7.396023e–07 

 PF11_0127  7.396023e–07 

 PF11_0164  2.958409e–06 

(continued)
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Table 2 
(continued)

 Gene ID  Wilcoxon  P  value 

 PF11_0236  2.958409e–06 

 PF11_0289  7.396023e–07 

 PF13_0295  7.396023e–07 

 PF13_0317  7.396023e–07 

 PF14_0061  8.875228e–06 

 PF14_0161  5.177216e–06 

 PF14_0212  1.479205e–06 

 PF14_0217  2.958409e–06 

 PF14_0231  7.396023e–07 

 PF14_0303  1.479205e–06 

 PF14_0336  7.396023e–07 

 PF14_0481  7.396023e–07 

 PF14_0497  2.958409e–06 

 PF14_0512  5.177216e–06 

 PF14_0611  2.958409e–06 

 PF14_0701  5.177216e–06 

 PF14_0715  8.875228e–06 

 PFA0290w  8.875228e–06 

 PFA0460c  9.61483e–06 

 PFB0470w  1.479205e–06 

 PFB0820c  7.396023e–07 

 PFB0845w  1.479205e–06    

 PFC0195w  2.958409e–06 

 PFC0370w  5.177216e–06 

 PFC0470w  5.177216e–06 

 PFC0495w  7.396023e–07 

 PFC0575w  7.396023e–07 

 PFC0785c  1.479205e–06 

 PFD0035c  7.396023e–07 

 PFD0215c  8.875228e–06 

 PFD0430c  7.396023e–07 

(continued)
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Table 2 
(continued)

 Gene ID  Wilcoxon  P  value 

 PFD0490c  7.396023e–07 

 PFD0520c  7.396023e–07 

 PFD0820w  7.396023e–07 

 PFE0820c  7.396023e–07 

 PFE0890c  7.396023e–07 

 PFE0950c  1.479205e–06 

 PFE1300w  7.396023e–07 

 PFE1595c  1.479205e–06 

 PFE1605w  5.177216e–06 

 PFI0300w  8.875228e–06 

 PFI0315c  8.875228e–06 

 PFI0860c  8.875228e–06 

 PFI1080w  1.479205e–06 

 PFI1225w  5.916818e–06 

 PFI1420w  7.396023e–07 

 PFI1485c  7.396023e–07 

 PFL0370w  5.177216e–06 

 PFL0410w  1.479205e–06 

 PFL0920c  7.396023e–07 

 PFL1045w  7.396023e–07 

 PFL1150c  1.479205e–06 

 PFL1195w  2.958409e–06 

 PFL1270w  1.479205e–06 

 PFL1970w  2.958409e–06 

 PFL1980c  7.396023e–07 

 PFL2190c  8.875228e–06 

 PFL2390c  7.396023e–07 

 PFL2415w  7.396023e–07 

 PFL2555w  5.177216e–06 
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   Table 3 
  Twenty-two top-ranking reactions of the parasite whose enzymes were signi fi cantly differentially 
expressed under drug (tetracycline) in fl uence vs. their expression under no drug in fl uence   

 Common reaction name  Unique ID in PlasmoCyc 
 Wilcoxon  P  
value 

 Threonine–tRNA ligase  THREONINE–TRNA-LIGASE-RXN  0.2189208 

 Phenylalanine–tRNA ligase  ALANINE–TRNA-LIGASE-RXN  0.1781820 

 Ferrochelatase  PROTOHEMEFERROCHELAT-RXN  0.2591973 

 Adenylosuccinate lyase  AMPSYN-RXN  0.2320216 

 Adenylosuccinate lyase  AICARSYN-RXN  0.2320216 

 Fructose-bisphosphate aldolase  F16ALDOLASE-RXN  0.2415238 

 Lysine decarboxylase  LYSDECARBOX-RXN  0.2591973 

 Copper-exporting ATPase  3.6.3.4-RXN  0.1472773 

 Inositol-1,4,5-trisphosphate 
5-phosphatase 

 3.1.3.56-RXN  0.2092226 

 Thiosulfate sulfurtransferase  THIOSULFATE-SULFURTRANSFERASE-RXN  0.2581537 

 UDP- N -acetylglucosamine–
dolichyl-phosphate 
 N -acetylglucosamine 
phosphotransferase 

 2.7.8.15-RXN  0.1718688 

 Adenylate kinase  ADENYL-KIN-RXN  0.0786467 

 Aromatic amino acid transferase  TYRAMINOTRANS-RXN  0.2415238 

 Aromatic amino acid transferase  PHEAMINOTRANS-RXN  0.2415238 

 Aspartate aminotransferase  ASPAMINOTRANS-RXN  0.2415238 

 Phenylalanine(histidine) 
aminotransferase 

 3-SULFINOALANINE-
AMINOTRANSFERASE-RXN 

 0.2415238 

 Dihydrolipoamide  S -
acetyltransferase 

 RXN0-1133  0.1848905 

 Acetyl-coA C-acyltransferase  METHYLACETOACETYLCOATHIOL-RXN  0.1118256 

 Acetyl-coA C-acyltransferase  KETOACYLCOATHIOL-RXN  0.1118256 

 Histone acetyltransferase  HISTONE-ACETYLTRANSFERASE-RXN  0.07230222 

 Acetyl-coA C-acetyltransferase  ACETYL-COA-ACETYLTRANSFER-RXN  0.1118256 

 Pyruvate dehydrogenase 
(lipoamide) 

 RXN0-1134  0.2179721 
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   Table 4 
  Fifty-two top-ranking reactions of the parasite whose enzymes were signi fi cantly differentially 
expressed under drug (chloroquine) in fl uence vs. their expression under no drug in fl uence   

 Reaction common name  Unique ID in PlasmoCyc  Wilcoxon  P  value 

 Acetyl-coA carboxylase  RXN0-5055  0.01262057 

 Acetyl-coA carboxylase  ACETYL-COA-CARBOXYLTRANSFER-RXN  0.01262057 

 Biotin carboxylase  BIOTIN-CARBOXYL-RXN  0.01262057 

 Phosphopantothenate–
cysteine ligase 

 P-PANTOCYSLIG-RXN  0.05755659 

 Long-chain-fatty-acid–coA 
ligase 

 RXN-7904  0.008890324 

 Long-chain-fatty-acid–coA 
ligase 

 R223-RXN  0.008890324 

 Long-chain-fatty-acid–coA 
ligase 

 ACYLCOASYN-RXN  0.008890324 

 Tyrosine–tRNA ligase  TYROSINE–TRNA-LIGASE-RXN  0.000641938 

 Methionine–tRNA ligase  METHIONINE–TRNA-LIGASE-RXN  0.03842444 

 Lysine–tRNA ligase  LYSINE–TRNA-LIGASE-RXN  0.0015584469 

 Leucine–tRNA ligase  LEUCINE–TRNA-LIGASE-RXN  0.01209398 

 Isoleucine–tRNA ligase  ISOLEUCINE–TRNA-LIGASE-RXN  0.0341075 

 Histidine–tRNA ligase  HISTIDINE–TRNA-LIGASE-RXN  0.003636625 

 Phosphoacetylglucosamine 
mutase 

 PHOSACETYLGLUCOSAMINEMUT-RXN  0.007259989 

 Mannose-6-phosphate isomerase  MANNPISOM-RXN  0.05335639 

 Ferrochelatase  PROTOHEMEFERROCHELAT-RXN  0.07540837 

 Guanylate cyclase  GUANYLCYC-RXN  0.04010272 

 Pseudouridylate synthase  PSEUDOURIDYLATE-SYNTHASE-RXN  0.01381947 

 GDP-mannose 4,6-dehydratase  GDPMANDEHYDRA-RXN  0.09140153 

 1-Phosphatidylinositol-4,5-
bisphosphate 
phosphodiesterase 

 3.1.4.11-RXN  8.875228e–06 

 Inositol-1,4,5-trisphosphate 
5-phosphatase 

 3.1.3.56-RXN  0.006815353 

 Pyruvate, water dikinase  RXN0-308  0.09261214 

 Pantetheine-phosphate 
adenylyltransferase 

 PANTEPADENYLYLTRAN-RXN  0.0004955335 

 Adenylyltransferase  FADSYN-RXN  0.03872114 

 Mannose-1-phosphate 
guanylyltransferase 

 2.7.7.13-RXN  0.00829316 

(continued)
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Table 4 
(continued)

 Reaction common name  Unique ID in PlasmoCyc  Wilcoxon  P  value 

 Ribose-phosphate 
diphosphokinase 

 PRPPSYN-RXN  0.00250444 

 Pyruvate kinase  PEPDEPHOS-RXN  0.06123981 

 Ethanolamine kinase  ETHANOLAMINE-KINASE-RXN  0.08042361 

 Choline kinase  CHOLINE-KINASE-RXN  0.007112016 

 6-Phosphofructokinase  6PFRUCTPHOS-RXN  0.005852473 

 Diphosphate–fructose-6-
phosphate 
1-phosphotransferase 

 2.7.1.90-RXN  0.005852473 

 Glutathione transferase  GST-RXN  0.002898356 

 Glutathione transferase  GSHTRAN-RXN  0.002898356 

 Farnesyltranstransferase  FARNESYLTRANSTRANSFERASE-RXN  0.0002514648 

 Protein farnesyltranstransferase  2.5.1.58-RXN  0.0002514648 

 Formate C-acetyltransferase  RXN-1381  0.09165743 

 Histone acetyltransferase  HISTONE-ACETYLTRANSFERASE-RXN  0.08575171 

 Glycylpeptide 
 N -tetradecanoyltransferase 

 2.3.1.97-RXN  0.002914033 

 Aminomethyltransferase  GCVT-RXN  0.002914033 

 Site-speci fi c DNA-
methyltransferase (cytosine-
speci fi c) 

 2.1.1.73-RXN  0.007795191 

 Cytochrome-b5 reductase  CYTOCHROME-B5-REDUCTASE-RXN  0.001432610 

 Sarcosine dehydrogenase  SARCOSINE-DEHYDROGENASE-RXN  0.002914033 

 Dimethylglycine dehydrogenase  DIMETHYLGLYCINE-DEHYDROGENASE-
RXN 

 0.002914033 

 Pyridoxamine-phosphate 
oxidase 

 PMPOXI-RXN  0.003350211 

 Protoporphyrinogen oxidase  PROTOPORGENOXI-RXN  0.07529077 

 Pyruvate dehydrogenase 
(lipoamide) 

 RXN0-1134  0.05377831 

 Ferredoxin–NADP( + ) reductase  FLAVONADPREDUCT-RXN  0.05004103 

 Ferredoxin–NADP( + ) reductase  1.18.1.2-RXN  0.05004103 

 None  GDPREDUCT-RXN  0.08158513 

 None  CDPREDUCT-RXN  0.08158513 

 None  ADPREDUCT-RXN  0.08158513 

  L -Lactate dehydrogenase   L -LACTATE-DEHYDROGENASE-RXN  0.00250444 
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the ability of the malaria parasite to resist these drugs. Figure   2   
shows the distributions of the sorted versions of the  P  values for all 
reactions of the parasite for the tetracycline vs. control condition 
(A) and the chloroquine vs. control condition (B). Based on these 
 fi ndings, we listed all reactions whose  P  values are  £ 0.25 for tetra-
cycline and  £ 0.1 for chloroquine.    

 Data in Table  1  suggested the following. Although a number 
of the genes in Table  1  are conserved 0.01004454 protein of 
unknown function, we were able to get important interpretation of 
the kind of results deducible from Table  1  via PFI0990. The gene 
PFI0990 is said to interact with the following genes: PF08_0026 
(conserved  Plasmodium  protein of unknown function), PFL1385C 
(a merozoite surface protein 9), and PFL1315W (a potassium 
channel protein). It was found that these genes are inhibited 
PFI0990 (  www.plasmodb.org    ), which is heavily expressed (by our 
results in Table  1 ) under tetracycline treatment compared with its 

  Fig. 2    Distribution of the sorted version of the  P  values for all reactions of the 
parasite for the tetracycline treatment ( a ) and the chloroquine treatment ( b ) com-
pared with control. Each gene indexed is plotted on the  x -axis and its corre-
sponding Wilcoxon  P  value is plotted on the  y -axis       

 

http://www.plasmodb.org
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normal expression in the absence of tetracycline treatment. This 
means that these genes must have been silenced for PFI0990 to be 
heavily expressed. First, PFL1385C (coding for a merozoite sur-
face protein 9) con fi rm this statement by Dahl et al.  (  25  ) : “Our 
results demonstrate that tetracyclines speci fi cally block expression 
of the apicoplast genome, resulting in the distribution of nonfunc-
tional apicoplasts into daughter merozoites.” And second, it is 
known potassium channels are found in most cell types and control 
a wide variety of cell functions. Therefore, the inhibition of 
PFL1315W looks to have contributed to the negative effect of tet-
racycline on the parasite. We also found PF10_0061 (an apical 
membrane antigen 1) to be heavily expressed under tetracycline 
treatment compared with its normal expression in the absence of 
tetracycline treatment. Knowing the genes it interacts with can give 
us more insight into the biological mode of action of tetracycline. 

 In Table  2 , little is known of the genes therein, interacted with. 
Information on gene PF07_0056 obtained from plasmoDB also 
gives us further information that can deduced from Table  2 , if 
more information about the genes therein are available, PF07_0056, 
which is heavily expressed under chloroquine treatment, activates 
MAL8P1.23 which in turn activates PFF1300w (a pyruvate kinase). 
It is known that the enzyme pyruvate kinase affects the survival of 
red blood cells. In our prediction, via the chloroquine treatment, 
positively. 

 We did not  fi nd any signi fi cant differential expression between 
any clusters in the chloroquine SAGE and control samples. Le 
Roch also reached this conclusion (personal communication). 

 From the chloroquine microarray data (obtained using the 
combinatorial technique based on the Kernighan–Li clustering 
technique; second extracted subgraph), con fi rmed using the wave-
lets technique based on the consecutive-ones clustering technique 
(eighth extracted subgraph), we observed that tryptophanyl-tRNA 
synthetase production in the apicoplast is upregulated. Wellems 
and Plowe  (  42  )  state that “chloroquine’s ef fi cacy is thought to lie 
in its ability to interrupt hematin detoxi fi cation in malaria parasites 
as they grow within their host’s red blood cells. Hematin is released 
in large amounts as the parasite consumes and digests hemoglobin 
in its digestive food vacuole. Hematin normally is detoxi fi ed by 
polymerization into innocuous crystals of hemozoin pigment and 
perhaps also by a glutathione-mediated process of destruction. 
Chloroquine binds with hematin in its  m -oxodimer form and also 
adsorbs to the growing faces of the hemozoin crystal, disrupting 
detoxi fi cation and poisoning the parasite. Chloroquine-resistance 
 P .  falciparum  survives by reducing accumulation of the drug in the 
digestive vacuole; however, the mechanism by which this happens 
has not been determined. Leading proposals include mechanisms 
that involve alterations of digestive vacuole pH or changes in the 
 fl ux of chloroquine across the parasite’s cytoplasmic or digestive 
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vacuole membrane.” The second mechanism of  fl ux of chloroquine 
was summarized by Krogstad et al.  (  43  ) , who write that “… chlo-
roquine-resistance  P. falciparum  accumulates less chloroquine than 
susceptible parasites. This observation suggests that chloroquine 
resistance in  P. falciparum  results from either decreased uptake or 
increased excretion of the drug by the resistant parasite … resis-
tance  P. falciparum  parasites have a mechanism for releasing chlo-
roquine (an ef fl ux process)  (  44  ) . This ef fl ux is either absent or 
greatly reduced in the susceptible parasite.” 

 Therefore, that tryptophanyl-tRNA synthetase production in 
the apicoplast is upregulated (in the chloroquine-induced microar-
ray data) may suggest that this ef fl ux process was made possible 
(caused) by the apicoplast, the mini bacterium living inside the 
malaria parasite. Ralph et al.  (  45  )  state that “it is not yet clear what 
the key function of the apicoplast is but the organelle is clearly 
indispensable. Curiously though, parasites cured of their apico-
plasts do not die immediately. Rather, they fail to invade new host 
cells successfully. This suggests that apicoplasts provide some com-
ponent essential to invasion and or [sic] establishment of the para-
sitophorous vacuole in the host cell”  (  46,   47  ) . 

 Thus a combination of chloroquine with the agents that cured 
 P. falciparum  of its apicoplast may be helpful in preventing the 
parasite from invading new host cells, and this combination may 
also kill the parasite, because it could not then  fl ux out accumu-
lated chloroquine in its digestive food vacuole. 

 Analyzing the two sets of microarray data together here provides 
the opportunity to identify reactions that may be upregulated via 
treatment with both drugs. In this line, we found the following reac-
tions: FARNESYLTRANSTRANSFERASE-RXN, TRYPTOPHAN-
TRNA-LIGASE, THREONINE-TRNA-LIGASE-RXN, and 
ALANINE-TRNA-LIGASE-RXN. These reactions appear very 
important in the parasite quest to resist the two antimalaria drugs we 
have considered in this paper (tetracycline and chloroquine). Our 
study represents the  fi rst attempt to unveil this. 

 We also observed that many (19 of 22) of the enzymes encoded 
by the genes active in the pathway targeted by chloroquine have not 
been identi fi ed. We are following these leads and we believe that 
further  fi ndings will be possible when such information is available.   

    4  Second Model: In Silico Model to Combat Resistance 

 In the second model, we extended our algorithm  (  48,   49  )  using a 
machine learning approach. The resulting algorithm is able to 
identify novel combinable drug targets from the metabolic network 
of  P. falciparum . Using this approach we identi fi ed, among others, 
19 drug targets con fi rmed from the literature. The machine 
learning approach combines clustering, common distance similar-
ity measurements, and hierarchical clustering to propose new 
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 combinations of drug targets, see details in Fatumo et al.  (  50  ) . Our 
result suggests that two or more enzymatic reactions from our list 
of drug targets that span across pathways could be combined to 
form an ef fi cient malaria drug target, targeting distinct time points 
in the parasite’s intraerythrocytic developmental cycle. 

 The metabolic network of  P. falciparum  was set up using 
the BioCyc database (  http://biocyc.org    ) as described recently for 
 E. coli   (  23  ) . The metabolites were the nodes and the enzymatic 
reactions were the edges of the network. Our network yielded 554 
metabolites and 575 reactions. Each compound can be substrate 
and product. 

 We set up a graph-based algorithm analyzing the structure of 
biochemical networks to infer differences (such as different paths) 
when exposed to changing nutrients and environmental condi-
tions. Raymond and Segrè  (  51  )  showed that the access for metabo-
lites changes drastically when oxygen is available. Following this 
strategy, we chose several sets of metabolites as sets of products. 
Then the investigated reaction was deleted from the network. The 
mutated network (the network with the deleted reaction) was 
investigated to determine whether the chosen products in each set 
could still be produced. We compared the number of products that 
could be produced in the wild-type network and the mutated net-
work. The difference in the numbers gave an insight into whether 
the investigated reaction is essential or not. 

  The algorithm investigates a reaction by deleting the reaction from 
the metabolic network and checking whether a chosen product can 
be produced without the deleted reaction.  

  We assigned a list of all reactions in the neighborhood of com-
pounds of the reaction under investigation. Thirty percent of all 
compounds of these reactions were set as a product to be produced 
by the remaining compounds. A total of 1,000 different combina-
tions of the chosen product were assembled.  

  The algorithm checked every investigated reaction for a minimum 
number of needed reactions and reactants needed to produce 
the products. A “greedy” approach was employed for minimizing 
the number of reactants and reactions needed to produce the 
products.  

  We computed the average minimum sets of substrates for a knockout 
reaction in the mutated network vs. wild-type. Similarly, we com-
puted the average minimum sets of reactions. We then compared the 
number of successful productions for the wild-type and knockout 
reactions. A total of 1,000 different sets of products were used.  

  4.1  Verifying 
the Essentiality of 
a Knockout Reaction

  4.2  Creating the 
Variety of Products

  4.3  Minimizing the 
Number of Reactants 
and Reactions to 
Produce the Products

  4.4  Comparing 
the Results of Wild-
Type and the Mutated 
Network to Obtain 
the Essentiality of the 
Investigated Reaction

http://biocyc.org
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  We identi fi ed 46 essential enzymatic reactions as reported by our 
algorithm. We used GENESIS  (  52  ) , a sophisticated tool for 
 analyzing gene expression data including clustering techniques, 
motif search, and visualization utilities, to analyze the essential 
reactions. Our DNA microarray data, which were obtained from 
Bozdech et al.  (  53  )  with 48 individual 1 h time points from the 
intraerythrocytic developmental cycle of  P. falciparum , were orga-
nized by hierarchical clustering. 

 We clustered the 46 expressed genes into 6 groups according to 
their expression levels. Groups 1 and 2 had 4 enzymatic reactions, 
group 3 had 14 reactions, group 4 had 8 reactions, group 5 had 10 
reactions, and group 6 had 6 reactions. We noticed that all the reac-
tions in group 3 are responsible for transport and all coded for one 
gene; two reactions in group 6 also coded for the same gene. This 
left us with only 30 essential reactions as possible targets.  

  We found from the drug banks SIGMA and TDR targets for inhib-
itors or drugs for most of the possible drug targets we identi fi ed. 
We have at least one inhibitor/drug for 19 possible drug targets. 
We further did gene expression analysis of the 19 possible drug 
targets to determine whether two or more enzymatic reactions in 
the initial groups overlap with the new groups. It seems reasonable 
to combine the inhibitors for such possible drug targets because 
the resulting drug might attack the parasite at the same time point 
in its life cycle during its stay in the human red blood cells. 

 We clustered the gene expression data analysis using GENESIS 
 (  50  ) . This analysis resulted in two new groups, with the initial groups 
1, 5, and 6 now belonging to new group A and the initial groups 2 
and 4 now belonging to group B. We hypothesize that it is bene fi cial 
to combine inhibitors/drugs for targets within each group.   

    5  Conclusion

  With the  fi rst in silico model, we were able to use the biochemical 
network of  P. falciparum  to deduce its drug resistance mechanism(s) 
using two sets of gene expression data obtained from treatment of 
the parasite with chloroquine and tetracycline. Our work is the  fi rst 
to develop and apply computational means toward the elucidation 
of these mechanisms in  P. falciparum . Our work suggests viable 
mechanisms for the resistance of the malaria parasite to chloro-
quine and tetracycline. When these results are experimentally tested 
they may provide useful weapons to ef fi ciently cleanse malaria para-
sites from the blood stream. 

 With the second in silico model, we established a machine 
learning tool that identi fi ed drug targets con fi rmed from the litera-
ture, which we then further analyzed using a sophisticated gene 
expression analysis tool. Our data were organized using common 

  4.5  Gene Expression 
Analysis

  4.6  Comparative 
Screening Analysis of 
Possible Drug Targets
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distance similarity measurements and hierarchical clustering. Our 
results suggest that two or more enzymatic reactions from the list 
of our drug targets, which span about ten pathways, could be com-
binable if targeted at distinct pathways to produce an ef fi cient 
malaria drug.      

  Acknowledgments 

 Many thanks go to Karine Le Roch, Svetlana Bulashesva, Benedikt 
Brors, Gunnar Schramm, Anna-Lena Kranz, Roland Eils, and 
Rainer Koenig for many useful discussions and contributions.  

   References 

    1.    Pierotti MA, Tamborini E, Negri T et al (2011) 
Targeted therapy in GIST: in silico modeling 
for prediction of resistance. Nat Rev Clin Oncol 
8:161–170. doi:  10.1038/nrclinonc.2011.3      

    2.    Noble D (2002) Modelling the heart – from 
genes to cells to the whole organ. Science 
295(5560):1678–1682  

    3.    Hammer GL, Sinclair TR, Chapman SC, 
Oosterom EV (2004) Scienti fi c correspondence 
on systems thinking, systems biology and the in 
silico plant. Plant Physiol 134:909–911  

    4.    Deville Y, Gilbert D, Helden JV, Wodak SJ 
(2003) An overview of data models for the 
analysis of biochemical pathways. Brief 
Bioinform 4(3):246–259  

    5.    Crampin EJ, Schnell S (2004) New approaches 
to modelling and analysis of biochemical reac-
tions, pathways and networks. Prog Biophys 
Mol Biol 86(1):1–4  

    6.    Noble D, Rudy Y (2001) Models of cardiac 
ventricular action potentials: iterative interac-
tion between experiment and simulation. Phil 
Trans R Soc Lond A 359:1127–1142  

    7.    Van’t Veer LJ, Dai H, van de Vijver MJ et al 
(2002) Gene expression pro fi ling predicts clin-
ical outcome of breast cancer. Nature 
415:530–536  

    8.    Stephanopoulos G, Hwang D, Schmitt WA, 
Mistra J (2002) Mapping physiological states 
from microarray expression measurements. 
Bioinformatics 18:1054–1063  

    9.    Gasch AP, Spellman PT, Kao CM et al (2000) 
Genomic expression programs in the response 
of yeast cells to environmental changes. Mol 
Biol Cell 11:4241–4257  

    10.    Spellman PT, Sherlock G, Zhang MQ et al 
(1998) Comprehensive identi fi cation of cell 
cycle-regulated genes of the yeast  Saccharomyces 
cerevisiae  by microarray hybridisation. Mol Biol 
Cell 9:3273–3297  

    11.    Gardner TS, di Bernardo D, Lorenz D, Collins 
JJ (2003) Inferring genetic networks and iden-
tifying compound mode of action via expres-
sion pro fi ling. Science 301:102–105  

    12.    Berg JM, Tymoczko JL, Stryer L (2002) 
Biochemistry, 5th edn. W.H. Freeman, New 
York, p 1050  

    13.    Karp PD, Riley M, Pellegrini-Toole A (2002) 
The MetaCyc database. Nucleic Acids Res 
30:59–61  

    14.    Khodursky AB, Peter BJ, Cozzarelli NR et al 
(2000) DNA microarray analysis of gene 
expression in response to physiological and 
genetic changes that affect tryptophan metabo-
lism in  Escherichia coli . Proc Natl Acad Sci USA 
97:12170–12175  

    15.    Neidhardt FC (1996)  Escherichia coli  and 
Salmonella: cellular and molecular biology. 
American Society for Microbiology, 
Washington, DC  

    16.    Uetz P, Giot L, Cagney G et al (2000) A com-
prehensive analysis of protein-protein interac-
tions in  Saccharomyces cerevisiae . Nature 
403:623–627  

    17.    Ideker T, Ozier O, Schwikowski B, Siegel AF 
(2002) Discovering regulatory and signalling 
circuits in molecular interaction networks. 
Bioinformatics l8(Suppl 1):S233–S240  

    18.    Hanisch D, Zien A, Zimmer R, Lengauer T 
(2002) Co-clustering of biological networks 
and gene expression data. Bioinformatics 
8(Suppl 1):S145–S154  

    19.    Zien A, Küffner R, Zimmer R, Lengauer T 
(2000) Analysis of gene expression data with 
pathway scores. Proc Int Conf Intell Syst Mol 
Biol 8:407–417  

    20.    Karp PD, Ouzounis CA, Moore-Kochlacs C 
et al (2005) Expansion of the BioCyc collec-
tion of pathway/genome databases to 160 
genomes. Nucleic Acids Res 33:6083–6089  

http://dx.doi.org/10.1038/nrclinonc.2011.3


64 Segun Fatumo et al.

    21.    Francke C, Siezen RJ, Teusink B (2005) 
Reconstructing the metabolic network of a 
bacterium from its genome. Trends Microbiol 
13(11):550–558  

    22.    König R, Eils R (2004) Gene expression analy-
sis on biochemical networks using the Potts 
spin model. Bioinformatics 20:1500–1505  

    23.    König R, Schramm G, Oswald M et al (2006) 
Discovering functional gene expression pattern 
in the metabolic network of  Escherichia coli  
with wavelets transforms. BMC Bioinformatics 
7:119  

    24.    Gunasekera AM, Patankar S, Schug J et al 
(2003) Drug-induced alterations in gene 
expression of the asexual blood forms of 
 Plasmodium falciparum . Mol Microbiol 
50(4):1229–1239  

    25.    Dahl EL, Shock JL, Shenai BR et al (2006) 
Tetracyclines speci fi cally target the apicoplast 
of the malaria parasite  Plasmodium falciparum . 
Antimicrob Agents Chemother 50(9):
3124–3131  

    26.    Booth KS, Lueker GS (1976) Testing for the 
consecutive ones property, interval graphs, 
and graph planarity using  PQ -Tree algorithms. 
J Comput Syst Sci 13:335–379  

    27.    Cohen J (1988) Statistical power analysis for 
the behavioral sciences, 2nd edn. Lawrence 
Erlbaum Associates, Hillsdale, NJ  

    28.    Gunasekera AM, Myrick A, Le Roch K et al 
(2007)  Plasmodium falciparum : genome wide 
perturbations in transcript pro fi les among 
mixed stage cultures after chloroquine treat-
ment. Exp Parasitol 117:87–92  

    29.    Trager W, Jensen JB (1976) Human malaria 
parasites in continuous culture. Science 193:
673–675  

    30.    Le Roch KG, Zhou Y, Blair PL et al (2003) 
Discovery of gene function by expression 
pro fi ling of the malaria parasite life cycle. 
Science 301:1503–1508  

    31.    Zhou Y, Abagyan R (2002) Match-only inte-
gral distribution (MOID) algorithm for high-
density oligonucleotide array analysis. BMC 
Bioinformatics 3:3  

    32.    Huber W, von Heydebreck A, Sultmann H 
et al (2002) Variance stabilization applied to 
microarray data calibration and to the 
quanti fi cation of differential expression. 
Bioinformatics 18(Suppl 1):S96–S104  

    33.    Waller RF, Reed MB, Cowman AF, McFadden 
GI (2000) Protein traf fi cking to the plastid of 
 Plasmodium falciparum  is via the secretory 
pathway. EMBO J 19:1794–1802  

    34.    van Dooren GG, Marti M, Tonkin CJ et al 
(2005) Development of the endoplasmic retic-
ulum, mitochondrion and apicoplast during 
the asexual life cycle of  Plasmodium falciparum . 
Mol Microbiol 57:405–419  

    35.    Bozdech Z, Zhu J, Joachimiak MP et al (2003) 
Expression of the schizont and trophozoite 

stages of  Plasmodium falciparum  with a 
 long-oligonucleotide microarray. Genome 
Biol 4:R9  

    36.    Bozdech Z, Llinas M, Pulliam BL et al (2003) 
The transcriptome of the intraerythrocytic 
developmental cycle of  Plasmodium falci-
parum . PLoS Biol 1:E5  

    37.    Brown DE, Huntley CL (1992) A practical 
application of simulated annealing to cluster-
ing. Pattern Recog 25:401–412  

    38.    Kernighan BW, Lin S (1970) An ef fi cient heu-
ristic procedure for partitioning graphs. Bell 
Syst Tech J 49:291–307  

    39.   Dutt S (1993) New faster Kernighan-Lin type 
graph-partitioning algorithms. In: Proceedings 
of the 1993 IEEE/ACM international confer-
ence on computer-aided design, Santa Clara, 
CA, pp 370–377  

    40.   Aarts EHL, van Laarhoven PJM (1985) A new 
polynomial time cooling schedule. In: 
Proceedings of the IEEE international confer-
ence on computer-aided design, Santa Clara, 
CA, pp 206–208   

    41.   Whites SR (1984) Concepts of scale in simu-
lated annealing. In: Proceedings of the IEEE 
international conference on computer-aided 
design, Port Chester, NY, pp 646–651  

    42.    Wellems T, Plowe CW (2001) Chloroquine-
resistant malaria. J Infect Dis 184:770–776  

    43.    Krogstad DJ, Schlesinger PH, Herwaldt BL 
(1988) Antimalarial agents: mechanism of 
chloroquine resistance. Antimicrob Agents 
Chemother 32:799–801  

    44.    Krogstad DJ, Gluzman IY, Kyle DE et al 
(1987) Ef fl ux of chloroquine from  Plasmodium 
falciparum : mechanism of chloroquine resis-
tance. Science 238:1283–1285  

    45.    Ralph SA, D’Ombrain MC, McFadden GI 
(2001) The apicoplast as an antimalarial drug 
target. Drug Resist Updat 4:145–151  

    46.    Fichera ME, Roos DS (1997) A plastic organ-
elle as a drug target in apicomplexan parasites. 
Nature 390:407–409  

    47.    He CY, Shaw MK, Pletcher CH et al (2001) A 
plastic segregation defect in the protozoan par-
asite  Toxomplasma gondii . EMBO J 20:
330–339  

    48.    Fatumo S, Plaimas K, Mallm JP et al (2009) 
Estimating novel potential drug targets of 
 Plasmodium falciparum  by analysing the meta-
bolic network of knock-out strains in silico. 
Infect Genet Evol 9(3):351–358  

    49.    Fatumo S, Plaimas K, Adebiyi E, König R 
(2011) Comparing metabolic network models 
based on genomic and automatically inferred 
enzyme information from Plasmodium and its 
human host to de fi ne drug targets in silico. 
Infect Genet Evol 11(4):708–715  

    50.   Fatumo S, Adebiyi E, Schramm G et al (2009) 
An  in-silico  approach to design ef fi cient malaria 
drug targets to combat the malaria resistance 



65In Silico Models for Drug Resistance 

problem. Presented at the Computer Science 
and Information Technology Spring 
Conference, Singapore, 17–20 Apr 2009. 
  http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=5169419&tag=1      

    51.    Raymond J, Segrè D (2006) The effect of oxy-
gen on biochemical network and their evolu-
tion of complex life. Science 311:1764–1767  

    52.    Sturn A, Quackenbush J, Trajanoski Z (2003) 
Client-server environment for high-perfor-
mance gene expression data analysis. 
Bioinformatics 19:772–773  

    53.    Bozdech Z, Llinas M, Pulliam BL et al (2003) 
The transcriptome of the intraerythrocytic 
developmental cycle of  Plasmodium falci-
parum . PLoS Biol 1:85–100    

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5169419&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5169419&tag=1

	Chapter 4: In Silico Models for Drug Resistance
	1 Introduction
	1.1 In Silico Modeling

	2 Materials and Concepts
	2.1 DNA Microarray
	2.2 Biochemical Metabolic Network
	2.3 BioCyc: A Collection of Biochemical Pathway Databases
	2.4 Pathway Tools

	3 First Model: In Silico Model for Deducing Drug Resistance Mechanisms
	3.1 Gene Expression Data Used
	3.2 Mapping of SAGE Tags to Genes
	3.3 Model for Analyzing Gene Expression Data on Metabolic Networks
	3.4 Construction of the Metabolic Network from PlasmoCyc (BioCyc)
	3.5 Network Clustering Using Kernighan–Li and Simulated Annealing Algorithms
	3.6 Mapping Gene Expression Data onto Reactions and Feature Extraction
	3.7 Analysis of Stimulated or Repressed Pathways
	3.8 Results and Discussion

	4 Second Model: In Silico Model to Combat Resistance
	4.1 Verifying the Essentiality of a Knockout Reaction
	4.2 Creating the Variety of Products
	4.3 Minimizing the Number of Reactants and Reactions to Produce the Products
	4.4 Comparing the Results of Wild-Type and the Mutated Network to Obtain the Essentiality of the Investigated Reaction
	4.5 Gene Expression Analysis
	4.6 Comparative Screening Analysis of Possible Drug Targets

	5 Conclusion
	References


