Contents:

1. Features of Compensation for Damage Caused to Natural Resources in Kazakhstan
 by Z. Abdukarimova, K. Bitemirov, N. Bizhan, A. Esenaliyev, and N. Poshanov, Z. Kalkanova
 ... 1169

2. Assessing Corporate Culture of an Enterprise-based on Competing Values Framework Design
 by I.S. Balandina, L.V. Obolentseva, S.A. Aleksandrova, Y.O. Polyakova, and S.B. Dulfan
 ... 1176

3. Development Problems of Social Entrepreneurship in Kazakhstan
 by M.Sh. Bauer, R.S.Mussina, N.A. Bencheva, T.V.Ovchinnikova, and I.K. Amerkhanova
 ... 1186

4. State Planned Economy within the Modern Economic Regime
 by S.P. Bortnikov
 ... 1196

5. Effective Human Capital Management as a Growth Factor in the Agricultural Production Sector
 ... 1205

6. The Influence of Distinctive Capability and Innovation Management towards the Performance of ISPs in Indonesia
 by H. Christiadi, E. Tisnawati Sule, Y. Suryana, and E. Febrin
 ... 1212

7. Analysis of Electricity Production and Consumption in the Western Economic Zone of the Republic of Sakha (Yakutia) for Developing an Effective Fuel and Energy Balance
 by I. Damdinovna Elyakova, N. Sergeevna Buryanina, Y.Fedorovich Koroluk, A. Lvovich Elyakov, L. Ivanovna Danilova, A. Andreевич Khrisoforov, and E. Evgenyevna Noeva
 ... 1222

8. Studying Concepts of the Breakthrough Economic Reforms in Selected Developed and Developing Countries and Regions of the World: Economic and Legal Aspects
 by E. Evgenyevna Frolova, S. Sergeevich Zankovsky, M. Nikolaevich Dudin, S. Borisovich Zinkovsky, and A. Nickolaevich Kirsanov
 ... 1236

9. Digital Economy: Challenges and Threats for Modern Russia
 by A.I. Gretchenko, I.V. Gorokhova, O.G. Demenko, and A.A. Gretchenko
 ... 1243

10. Model of Remuneration: ‘Catching up’ Type (Russian Case)
 by A. Ivanovich Gretchenko, O. Gennadevna Demenko, and A.A. Gretchenko
 ... 1249
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>The Analysis of Customs Services Practice in the Conditions of the Eurasian Economic Union: Problems and Directions of Improvement</td>
<td>Y. Evgenievna Gupanova, G. Iksanovna Nemirova, and A. Evgenievich Suglobov</td>
<td>1259</td>
</tr>
<tr>
<td>13</td>
<td>The Ideology of the European Union</td>
<td>E.A. Iukov, and V.V. Zheltov</td>
<td>1278</td>
</tr>
<tr>
<td>14</td>
<td>Developing Internet Banking Within the Context of Building A Bank’s Competitive Advantage</td>
<td>N. Khamitkhan, E. Bakhyt, and A. Karshalova</td>
<td>1286</td>
</tr>
<tr>
<td>15</td>
<td>Possibility of Project Management in the Activities of Non-profit Organizations</td>
<td>A.N. Khorin, A.V. Brovkin, and Y.M. Potanina</td>
<td>1291</td>
</tr>
<tr>
<td>17</td>
<td>Forensic Enquiry as a Method for Objective Evidence Verification</td>
<td>R.V. Kostenko, and E.S. Tokarenko</td>
<td>1312</td>
</tr>
<tr>
<td>19</td>
<td>Conceptual Logical Model of Managing the Development of Local Food Markets in the Context of Intermunicipal Socioeconomic Differentiation</td>
<td>N. Leonidovna Kuzmina, and L. Leonidovna Tonysheva</td>
<td>1324</td>
</tr>
<tr>
<td>20</td>
<td>Methodological Approaches to Assessing the Efficiency of Personnel Management in Companies</td>
<td>K.A. Lebedev, O.Sergeevna Reznikova, S. Dmitrievna Dimitrieva, and E. Ismetovna Ametova</td>
<td>1331</td>
</tr>
</tbody>
</table>
Food Security Assessment in Kazakhstan
by G. Koishybaevna Lukhmanova, N. Baisharipovna Syzdykbayeva, L. Abydybayevna Baibulekova, S. Ergazykyzy Abydykalyk, and A. Askarovna Seidakhmetova ... 1337

Development Prospects of Ukraine’s Foreign Trade in Agricultural Products in the Context of European Integration and Global Challenges
by I.Y. Matyushenko, T. V. Shtal, L.I. Piddubna, I. O. Piddubnyi, and Y.M. Kvitka ... 1343

On the Issue of Criminal Prosecution for Market Abuse in Russia and the European Union
by Y. Vladimirovna Mikhalenko (Kalinina), E. Gennadievna Shadrina, and A. Ibragimovna Rashidova ... 1362

Global Value Chains and Export-Import Determinants in the European Union Member Countries
by Rajmund Mirdala ... 1365

Management Technologies to Adapt Modern Principles of Industrial Enterprise’ Management
by V.Y. Mishakov, O.N. Beketova, V.M. Bykov, O.V. Krasnyaskaya, and M.G. Vitushkina ... 1377

Using Public-Private Partnership for Stimulating Innovational Developments in the Infrastructural Sphere
by I. Morozova, T. Litvinova, I.A. Mordvintsev, and O.V. Konina ... 1382

The Association between Enterprise Risk Management and Corporate Governance Quality: The Mediating Role of Internal Audit Performance
by F.M. Mustafa, and M.B. Al-Nimer ... 1387

Specifics of Integration Processes in the Former Soviet Union: The Case of the Eurasian Economic Union
by A. Oinarova, R. Alimkulov, and S. Tlepina ... 1402

Comprehensive Estimation of Prerequisites on Creating an Agricultural Cluster in the Akmola Region
by S. Okutayeva, N. Yesmagulova, A. Sultanova, S. Iskendirova, K. Japarova, and T. Kuangaliyeva ... 1416

Creative Industries Development in Russia: Tendencies and Perspectives
by O. Patlasov, and Y. Zharov ... 1428
Domestic Revenue Mobilization and Agricultural Productivity: Evidence from Nigeria
by O. Popoola, A.J. Asaleyeye, and D.F. Eluyela ... 1439

Statistical Methods in the Analysis of Pollution Impacts on Human Health
by M.V. Rossinskaya, V.V. Rokotyanskaya, V.V. Medovy, E.V. Ivanova, and E.Ch. Shaduyeva ... 1451

Economic Ways to Improve the Mechanization of Production
by A.V. Rusnak, K.A. Buzhynska, H.Yu. Tkachuk, S.I. Pavlova, and N.L. Ovander... 1461

Major Development Mechanisms for the Infrastructure of the Transport and Logistics Complex in Kazakhstan
by G. Sovetovna Saktaganova, L. Valentinovna Legostaeva, and A. Tursynbaevna Karipova ... 1474

Development of Professional Competency of Managerial Staff on the Basis of Acmeological Approach
by T.V. Shtal, I. Lytvchenko, and H.A. Poliakova ... 1481

by S. Gennadevich Solovev ... 1489

Financial Control and Financial Monitoring within the System of Government Financial Administration: Correlations and Interrelationships
by E. Lvovna Vlasova, and E. Victorovna Barasheva ... 1494

Optimization of the Management Process in Conditions of the Political Space Transformation: Methodology of Conflict Analysis
by N. Yurchenko, V. Skorobogatov, I. Yurchenko, M. Dontsova, and T. Telyatnik ... 1503
Journal of Advanced Research in Law and Economics is designed to provide an outlet for theoretical and empirical research on the interface between economics and law. The Journal explores the various understandings that economic approaches shed on legal institutions.

Journal of Advanced Research in Law and Economics publishes theoretical and empirical peer-reviewed research in law and economics–related subjects. Referees are chosen with one criterion in mind: simultaneously, one should be a lawyer and the other an economist. The journal is edited for readability both lawyers and economists scholars and specialized practitioners count among its readers.

To explore the various understandings that economic approaches shed on legal institutions, the Review applies to legal issues the insights developed in economic disciplines such as microeconomics and game theory, finance, econometrics, and decision theory, as well as in related disciplines such as political economy and public choice, behavioral economics and social psychology. Also, Journal of Advanced Research in Law and Economics publishes research on a broad range of topics including the economic analysis of regulation and the behavior of regulated firms, the political economy of legislation and legislative processes, law and finance, corporate finance and governance, and industrial organization.

Its approach is broad–ranging with respect both to methodology and to subject matter. It embraces interrelationships between economics and procedural or substantive law (including international and European Community law) and also legal institutions, jurisprudence, and legal and politico – legal theory.

The quarterly journal reaches an international community of scholars in law and economics.

Submissions to Journal of Advanced Research in Law and Economics are welcome. The paper must be an original unpublished work written in English (consistent British or American), not under consideration by other journals.

Journal of Advanced Research in Law and Economics is currently indexed in SCOPUS, EconLit, RePec, CEEOL, EBSCO, ProQuest, and Cabell’s Directory.

Invited manuscripts will be due till 15th of July, 2018, and shall go through the usual, albeit somewhat expedited, refereeing process.

Deadline for submission of proposals: 15th of July, 2018
Expected Publication Date: September 2018
Web: http://journals.aserspublishing.eu
E–mail: jarle@aserspublishing.eu
Full author’s guidelines are available from: http://journals.aserspublishing.eu/jarle/about
Domestic Revenue Mobilization and Agricultural Productivity: Evidence from Nigeria

Olabisi POPOOLA
Landmark University, Department of Economics, College of Business and Social Sciences, Nigeria
popoola.o@lmu.edu; ngmegabeece09@gmail.com

Abiola John ASALEYE
Landmark University, Department of Economics, College of Business and Social Sciences, Nigeria
asaleyabiola@lmu.edu; ngasaleyebiola@yahoo.com

Damilola Felix ELUYELA
Landmark University, Department of Accounting, College of Business and Social Sciences, Nigeria
eluyela.damilola@lmu.edu; ngdamilola.eluyela@gmail.com

Suggested Citation:

Article’s History:
Received February, 2018; Revised April, 2018; Accepted June, 2018. 2018. ASERS Publishing©. All rights reserved.

Acknowledgements:
The authors are thankful to Landmark University, Omu-Aran, Kwara State, Nigeria for financial support to publish this article.

Abstract:
Foreign and domestic debts have raised questions about fiscal sustainability and implications for sustainable development. One of the major problems in the agricultural sector in developing economies is inadequate capital, despite its centrality to growth and development. This study examines the long-run relationship and the casual relationships between domestic revenue mobilization and agricultural productivity in Nigeria using Auto Regressive Distributed Lag and Granger Non-causality. Using agricultural productivity as the dependent variable, the result revealed that agricultural productivity has a negative long-run relationship with government recurrent expenditure on agriculture and tax revenue, while agricultural credit is not statistically significant. This result indicated that supplementary resource such as foreign aid could be embarked on in the long-run. Reliance on foreign aid may be volatile to the economy, and as well not suitable to achieve long-term goals. So, there is a need to maximize benefit from tax revenue and ensure that resources are allocated to prioritizes right sectors such as the agricultural sector. The causality test revealed that there is a bi-directional relationship between agricultural productivity and tax revenue. The study recommended among others, the need for public finance reforms to increase government revenue and promote growth in the agricultural sector by enhancing the quality of the tax system.

Keywords: domestic resource; mobilization; agricultural productivity; ARDL; Nigeria.

JEL Classification: F43; C32; E24

Introduction
Emphasis has been placed on capital and labor as the major determinates of growth. Empirically, studies have shown that there is a positive relationship between output and financial mobilization. The importance of resource mobilization is fundamental to economic growth and development in developing economies as identified by Wagner’s law (Wagner, Weber 1977). Most developing economies depend on foreign and domestic resources through borrowing. These have raised questions about its fiscal sustainability and implications for sustainable growth and development (Baharumshah et al. 2017). Domestic Resources Mobilization through taxation can help to promote long-term sustainable growth in developing countries. Most studies have focused on the aggregated
output and resource mobilization, while studies on the agricultural sector in developing economies are still growing. In light of the importance of the agricultural sector to development, this study examines the long-run relationship and the casual relationships between domestic revenue mobilization and agricultural productivity in Nigeria using Auto Regressive Distributed Lag and Granger Non-causality.

1. Literature Review

In the traditional growth model, an emphasis has been placed on capital and labor as the major determinates of growth. Empirically, studies have shown that there is a positive relationship between output and financial mobilization (Adama et al. 2018; Hassan et al. 2011; Tchamyou, Asongu 2017). Despite the implications of financial mobilization on growth and development, developing economies are still far behind in financial resources compared to developed economies. The importance of resource mobilization is fundamental to economic growth and development in developing economies as identified by Wagner’s law (Wagner, Weber 1977). Most developing economies depend on foreign and domestic resources through borrowing. These have raised questions about its fiscal sustainability and implications for sustainable growth and development (Baharumshah et al. 2017).

In most developing economies, most especially in Africa within the periods of the 1980s and 1990s, major reforms were introduced to promote growth and development (Aryeetey 1994; Lawal et al. 2018). The programmes were encouraged and promoted by the World Bank and International Monetary Fund (IMF). Promoting financial liberalization was one of the major strategies highlighted for growth and development, via a market-based system. It was observed that the programmes succeeded in liberalizing the financial sector. However, its impact on growth and development cannot be accounted for (Reinhart, Tokatlidis 2003). In addition, Al-Suwailem (2014) documented that financial liberalization causes instability and crises in developing economies. This argument was also supported by the studies of Murinde (2010), and Demirguc-Kunt and Detragiache (2001). NEPAD (2013) also stressed that the foreign mobilization of resource in developing economies has not promoted sustainable growth and development. On the other hand, OECD (2010) pointed out that domestic resource mobilization (DRM) was identified by the ‘monetary consensus on financing for development’ as a means of promoting growth and development in developing economies. Tax Justice Network of Africa (2011) also emphasized on promoting DRM in developing economies since the international economic crisis in 2009. Consequently, the study by Culpeper and Aniket (2008) showed that DRM can promote higher levels of growth and reduce poverty level, especially in developing countries.

Theoretically, some studies have shown that there is a positive relationship between resource mobilization and output (Rajan, Zingale 2003; Wagner, Weber 1977). As stated in Wagner’s law by Wagner and Weber (1977), as public expenditure tends to increase in most countries, there is a tendency that the increased expenditure will spur growth and development in such country. While Tchamyou and Asongu (2017) believed that the relationship between resource mobilization and output depends on some factors such as the level of the economy at the present time, the role of government and the nature of credit facilities. By this, it does not necessarily mean that government expenditure will promote growth and development if certain important factors were not considered such as the role of institutions, prioritizing the right sector, among others. Also, prioritize a particular sector to stimulate growth and development will help the developing economies to achieve various macroeconomic objectives (Campbell, Asaley 2016; Singer 1958; Streeten 1969). Nigeria is no exception, efficient mobilization of a country’s resources to the agricultural sector will help to reduce income inequality, promote employment and increase overall welfare in the long-run. Alston and Pardey (2014) noted that agricultural sector accounts for a comparatively small share of the global economy, despite its importance for creating employment in the rural areas and its centrality in the aspect of growth and development. Most of the middle and low-income countries in the world are farmers and live in rural communities where farming serves as a means of living (World Bank 2017). One of the major problems in the agricultural sector, most especially in developing economies is inadequate capital resulting from low income and savings.

DRM through taxation can help to promote long-term sustainable growth in developing countries. Nigeria has experienced notable economic growth for some decades before the recent recession in the second quarter of 2016 (World Bank 2017). However, the indicators on the economic performance showed that the growth is not pro-poor. High unemployment/underemployment rate, poverty rate and low income still remained some of the problems in the country (Nigeria National Bureau of Statistics NBS 2016; Onli et al. 2017). The agriculture sector has lagged behind in GDP growth and promoting employment, growing at 3.7 per cent (WDI 2017). Nigeria population is on the increasing trend, population growth rate moved from 2.69 per cent in 2015 to 2.71 per cent in 2016 (WDI 2017). There is an increase in importation on foods and other basic commodities in the country, so
there is the need to finance the agricultural sector so as to make an adequate supply that will meet the demands of the citizens and promote employment opportunities in the rural areas.

Most studies have focused on the aggregated output and resource mobilization, while studies on the agricultural sector in developing economies are still growing. Few among others include the study of Newettie (2017) that examined the impact of government spending on agricultural growth in Zambia, Malawi, South Africa and Tanzania. It was concluded by the scholars that agricultural growth responds differently to the agricultural spending types across the countries. In a similar study, Chauke et al. (2015) carried out a comparative study on the impact of public expenditure on agricultural growth in South Africa and Zimbabwe, result from the study showed that capital expenditure is positively related to agricultural growth in both short-run and long-run for both countries. In Greece, Anastassiou and Dritsaki (2005) examined the relationship between tax revenue and rate of economic growth using a vector autoregressive model (VAR) and Granger causality test. The result shows that there exists a causal relationship between tax revenue and economic growth.

Two main channels have been identified in literature in which finance/capital affects the output sectors. The first is the long-run impact, theoretically (Barro 1990; Rebelo 1991); and empirically (Asaleye, Adama, Ogunjobi 2018; Amador-Torres 2017; Maftaudeen, Hussainatu 2014; Shwaib et al. 2015; among others). In the presence of a long-run relationship between two or more series, there is a tendency for the existence of a causal relationship at least in one direction (Granger 2004). Also, studies have shown that there are causal effects between finance/capital and output sectors (Fashina et al. 2018; Anastassiou, Dritsaki 2005; Jangili 2011; 2009; among others).

In light of the importance of the agricultural sector to development, this study examines the long-run relationship and the casual relationships between domestic revenue mobilization and agricultural productivity in Nigeria using Auto Regressive Distributed Lag (ARDL) and Granger Non-causality proposed by Toda and Yamamoto (1995). The choices of estimations are based on the strength of techniques. For example, irrespective that the series are I (0) and I (1), the ARDL technique is most suitable to estimate long-run behavior (Pesaran, Pesaran 1997). The Toda and Yamamoto's approach to causality test overcomes the limitations of the ordinary granger causality test by putting into consideration possible non-stationary or co-integration between series when the test for causality. Though the VECM also overcome the limitation of the ordinary causality approach, however, there is a loss of long-run information due to the first difference in VECM. The Granger Non-Causality approach fits a standard vector autoregressive model in the levels of the variable (Asaleye et al. 2017). Three main indicators have also been identified as the measurement of domestic resource mobilization in literature, namely: domestic savings, domestic credit and taxes. Evidence from the official statistics showed that Sub-Saharan African has the lowest saving rate at developing region due to low income (World Bank 2017). This study uses agricultural value added per worker to measure agricultural productivity and, domestic credit to agriculture and taxes as metrics for domestic resource mobilization1. OECD (2010) stressed that expenditure on taxation is a means of shifting accountability back from the taxpayers, which helps to reduce the uneven distribution of wealth and as well create stable, more legitimate state in the process.

2. Methodology

The theoretical framework of the study is built on the unrestricted Cobb – Douglas production function. This growth is flexible to accommodate the inputs of agriculture into the growth system, such as land, labor, fertilizer among others. The implicit form of the model is given as:

\[Y = f(X_i) \]

(1)

\[Y_i = a_0 + \sum b_j X_j + \epsilon_i \]

(2)

Equation (2) is the unrestricted Cobb-Douglas, linear in logarithms. Where \(Y_i \) is the output at time \(t \), \(a_0 \) is the intercept, \(X_j \) is the \(j^{th} \) input used in production at time \(t \), \(\epsilon_i \) is the error term. The variable \(Y \) will be proxy by Agricultural Value Added per Worker (AVAW), the inputs represented by \(X_j \) include: Tax Revenue (TXR);

1 Saving was not included as metric for domestic resource mobilization because of the low savings rate most especially among farmers, also no disaggregate data on savings for the agricultural sector. Other variables such as government recurrent spending on agriculture and government spending on infrastructures are included.
Government Recurrent Expenditure on Agriculture (GEXP); Government Spending on Infrastructure (GSF); Agricultural Credit (ACRT); Land Cultivated (LD); and Agricultural Employment (AEMP). To achieve the objective of this study, normalization will be done on AEMP, AWA, TXR and ACRT to establish long-run equations for agricultural employment, agricultural productivity, tax revenue, and agricultural credit which will be referred to as Model 1, 2, 3 and 4 respectively. Causality test as well was carried out to complement the results.

2.1. Modeling the Long-Run Impact

The bounds test approach by Pesaran and Pesaran (1997) was used to estimate the long-run relationship. Following the theoretical framework of the study, the Auto Regressive Distributed Lags (ARDL) unrestricted error correction models are given as follows: Model 1 using agricultural productivity (AVAW) as the dependent variable

$$
\Delta AWA = \alpha_0 + \alpha_1 \Delta AWA_{t-1} + \alpha_2 \Delta X_{t-1} + \alpha_3 \Delta GEXP_{t-1} + \alpha_4 \Delta GSF_{t-1} + \alpha_5 \Delta ACRT_{t-1} + \alpha_6 \Delta LD_{t-1} + \alpha_7 \Delta EMP_{t-1} + \sum_{i=1}^{q} \beta_i^1 \Delta AWA_{t-i} + \sum_{i=1}^{q} \beta_i^2 \Delta X_{t-i} + \sum_{i=1}^{q} \beta_i^3 \Delta GEXP_{t-i} + \sum_{i=1}^{q} \beta_i^4 \Delta GSF_{t-i} + \sum_{i=1}^{q} \beta_i^5 \Delta ACRT_{t-i} + \sum_{i=1}^{q} \beta_i^6 \Delta LD_{t-i} + \sum_{i=1}^{q} \beta_i^7 \Delta EMP_{t-i} + \epsilon_{t-1}
$$

Model 2 using Tax Revenue (TXR) as dependent variable

$$
\Delta TXR = \delta_0 + \delta_1 \Delta AWA_{t-1} + \delta_2 \Delta X_{t-1} + \delta_3 \Delta GEXP_{t-1} + \delta_4 \Delta GSF_{t-1} + \delta_5 \Delta ACRT_{t-1} + \delta_6 \Delta LD_{t-1} + \delta_7 \Delta EMP_{t-1} + \sum_{i=1}^{q} \lambda_i^1 \Delta TXR_{t-i} + \sum_{i=1}^{q} \lambda_i^2 \Delta AWA_{t-i} + \sum_{i=1}^{q} \lambda_i^3 \Delta X_{t-i} + \sum_{i=1}^{q} \lambda_i^4 \Delta GEXP_{t-i} + \sum_{i=1}^{q} \lambda_i^5 \Delta GSF_{t-i} + \sum_{i=1}^{q} \lambda_i^6 \Delta ACRT_{t-i} + \sum_{i=1}^{q} \lambda_i^7 \Delta LD_{t-i} + \sum_{i=1}^{q} \lambda_i^8 \Delta EMP_{t-i} + \epsilon_{t-1}
$$

Model 3 using Agricultural Credit (ACRT) as the dependent variable

$$
\Delta ACRT = \omega_0 + \omega_1 \Delta AWA_{t-1} + \omega_2 \Delta X_{t-1} + \omega_3 \Delta GEXP_{t-1} + \omega_4 \Delta GSF_{t-1} + \omega_5 \Delta ACRT_{t-1} + \omega_6 \Delta LD_{t-1} + \omega_7 \Delta EMP_{t-1} + \sum_{i=1}^{q} \phi_i^1 \Delta ACRT_{t-i} + \sum_{i=1}^{q} \phi_i^2 \Delta AWA_{t-i} + \sum_{i=1}^{q} \phi_i^3 \Delta X_{t-i} + \sum_{i=1}^{q} \phi_i^4 \Delta GEXP_{t-i} + \sum_{i=1}^{q} \phi_i^5 \Delta GSF_{t-i} + \sum_{i=1}^{q} \phi_i^6 \Delta ACRT_{t-i} + \sum_{i=1}^{q} \phi_i^7 \Delta LD_{t-i} + \sum_{i=1}^{q} \phi_i^8 \Delta EMP_{t-i} + \epsilon_{t-1}
$$

Model 4 using Agricultural Employment (AEMP) as the dependent variable

$$
\Delta AEMP = \sigma_0 + \sigma_1 \Delta AWA_{t-1} + \sigma_2 \Delta X_{t-1} + \sigma_3 \Delta GEXP_{t-1} + \sigma_4 \Delta GSF_{t-1} + \sigma_5 \Delta ACRT_{t-1} + \sigma_6 \Delta LD_{t-1} + \sigma_7 \Delta GEXP_{t-1} + \sum_{i=1}^{q} \gamma_i^1 \Delta AEMP_{t-i} + \sum_{i=1}^{q} \gamma_i^2 \Delta AWA_{t-i} + \sum_{i=1}^{q} \gamma_i^3 \Delta X_{t-i} + \sum_{i=1}^{q} \gamma_i^4 \Delta GEXP_{t-i} + \sum_{i=1}^{q} \gamma_i^5 \Delta GSF_{t-i} + \sum_{i=1}^{q} \gamma_i^6 \Delta ACRT_{t-i} + \sum_{i=1}^{q} \gamma_i^7 \Delta LD_{t-i} + \sum_{i=1}^{q} \gamma_i^8 \Delta GEXP_{t-i} + \epsilon_{t-1}
$$

In equation (3) to (6), the coefficients with the summation signs represent the short-run dynamics while α_i, δ_i, ω_i and σ_i for $i = 1, 2, ..., 7$ are the long-run multiples corresponding to the long-run relationship. The intercepts are α_0, δ_0, ω_0 and σ_0 for equations (3), (4), (5) and (6) respectively (Tang 2003; Pesaran et al. 2001; Poon 2010). The variable ‘q’ is the lag length for the unrestricted error correction model.

2.2. Modeling the Causal Effects

This study follows Toda and Yamamoto (1995) to examine the causal relationship between variables of choice. This approach shows how VAR can be formulated at levels form and carried out restrictions on the parameters matrices, relevant if the series are integrated or cointegrated of an arbitrary order (Toda, Yamamoto 1995). In the causality process, K represents the lag length while $(k + d_{max})$ order VAR represents the lag length plus the maximal order of integration. That is, the d_{max} represents the maximal order of integration. The estimation is carried out on $(k + d_{max})$ while the coefficient d_{max} lagged vectors are ignored. If two variables are assumed, say M and N. The model is given as:

1442
By the outline of Toda and Yamamoto (1995), the standard asymptotic distribution still holds in the causality process (Asaleye et al. 2017).

2.3. Sources of Data

The study employs time series secondary data collected on the variables specified in the model spanning the period 1980 to 2017. Data for agricultural value added per worker, agricultural employment and land cultivated were sourced from World Development Indicators (WDI 2017) while agricultural credit, government recurrent expenditure on agriculture, government spending on infrastructure and Tax revenue were sourced from Central Bank of Nigeria statistical bulletin (2017).

3. Presentation of Results

3.1. Long-Run Behavior Results

As earlier mentioned, to achieve the objectives of this study, normalization will be done on AEMP, AVAW, TXR and ACRT to establish long-run equations for agricultural employment, agricultural productivity, tax revenue, and government recurrent expenditure respectively.

Table 2. Model 1: AVAW long-run equation: ARDL (4, 12, 12, 12, 12, 12, and 11)

<table>
<thead>
<tr>
<th>Significance levels</th>
<th>Critical Bounds</th>
<th>F-Statistics Value</th>
<th>K_{max}</th>
<th>Hypothesis Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 10 per cent</td>
<td>2.12</td>
<td>3.23</td>
<td>9.661976</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes: * and ** Indicate Significant at 5% and 10% significance levels respectively.

Source: Computed by Authors’ using EViews 9.5.

Table 1 presents the summary of the unit root test results for the series in level and in first difference forms. The result of the ADF shows that apart from variables LD and TXR which were stationary at the level of 5 per cent significant in level forms, all other variables were integrated of order, since the absolute value of ADF statistics exceeded the critical value only at first difference at the level. Though, variable GEXP is stationary at 10 per cent significance level. The Philips Perron test indicated that GEXP and LD were stationary at 5 per cent significance level, while other variables were stationary at first difference. Though, TXR was stationary at the level of 10 per cent significance level. Based on this result, the ARDL was used to examine the long-run relationship.
Table 2 presents the ARDL bound test using agricultural productivity (AVAN) as the dependent variable. The result from the model selection criteria shows that the appropriate ARDL model is, using 4 lags for AVAN and with 12, 12, 12, 12 and 11 lags for ACRT, AEMP, GEXP, GSF, LD and TXR respectively. The appropriate lag length was selected by using the Hannan – Quinn criterion. As evidenced from the result there is an existence of cointegration at the levels of 10, 5, 2.5 and 1 per cent. The f-statistics is 9.661976, this is greater than the upper bounds of 3.23, 3.61, 3.99 and 4.43 for 10, 5, 2.5 and 1 per cent respectively; this means that there is a long run relationship between the variables. The diagnostic checks were carried on the model to determine its validity. The Breusch-Godfrey Serial Correlation LM with a probability value of 0.0853 shows that the study can reject the null hypothesis of serial correlation. Also, the null hypotheses of heteroskedasticity and errors not normally distributed were rejected at a 5 per cent significance level given respective probability as 0.0556 and 0.2902 respectively.

Table 3. Model 2: TXR long-run equation: ARDL (6, 8, 9, 8, 3, 1 and 0)

Table 3 shows the ARDL result using TXR as the dependent variable, with 10 lag for TXR and 12, 11, 0, 10, 2, 8 lag for AVAN, GEXP, GSF, ACRT, LD and AEMP respectively. The long-run relationship exists when the value of f-statistics is greater than the upper bound. From the table the f-stat is 10.68930, this is greater than the upper bounds for 10, 5, 2.5 and 1 per cent levels. This means that there is a long run relationship between the variables using TXR as a dependent variable at 10%, 5%, 2.5% and 1% level of significance. The Breusch-Godfrey Serial Correlation LM with probability Chi-square value of 0.5379 shows no serial correlation between the variables. The Heteroskedasticity test Chi-square probability value is 0.4011. Hence, the null hypothesis that

<table>
<thead>
<tr>
<th>Significance levels</th>
<th>Critical Bounds</th>
<th>F-Statistics Value</th>
<th>K_{max}</th>
<th>Hypothesis Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 5 per cent</td>
<td>2.45</td>
<td>3.61</td>
<td>9.661976</td>
<td>6</td>
</tr>
<tr>
<td>At 2.5 per cent</td>
<td>2.75</td>
<td>3.99</td>
<td>9.661976</td>
<td>6</td>
</tr>
<tr>
<td>At 1 per cent</td>
<td>3.15</td>
<td>4.43</td>
<td>9.661976</td>
<td>6</td>
</tr>
<tr>
<td>Diagnostic Checks</td>
<td></td>
<td>Probability</td>
<td></td>
<td>Hypothesis Testing</td>
</tr>
<tr>
<td>Breusch-Godfrey Serial Correlation</td>
<td>0.0853</td>
<td>Rejected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heteroskedasticity Test: ARCH</td>
<td>0.0556</td>
<td>Rejected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histogram – Normality Test</td>
<td>0.2902</td>
<td>Rejected</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors’ Computation using EViews 9.5.

The result of the model selections was not presented due to limited space but can be provided upon request.
there is no heteroskedasticity can be rejected. Likewise, the null hypothesis of errors not normally distributed is rejected at 5 per cent significance level with Chi-square probability value of 0.1282.

Table 4. Model 3: ACRT long-run equation: ARDL (10, 12, 11, 0, 10, 2, and 8)

<table>
<thead>
<tr>
<th>Significance levels</th>
<th>Critical Bounds</th>
<th>F-Statistics Value</th>
<th>Kmax</th>
<th>Hypothesis Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I0 Bound</td>
<td>I1 Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 10 percent</td>
<td>2.12</td>
<td>3.23</td>
<td>3.492973</td>
<td>6</td>
</tr>
<tr>
<td>At 5 percent</td>
<td>2.45</td>
<td>3.61</td>
<td>3.492973</td>
<td>6</td>
</tr>
<tr>
<td>At 2.5 percent</td>
<td>2.75</td>
<td>3.99</td>
<td>3.492973</td>
<td>6</td>
</tr>
<tr>
<td>At 1 percent</td>
<td>3.15</td>
<td>4.43</td>
<td>3.492973</td>
<td>6</td>
</tr>
</tbody>
</table>

Diagnostic Checks

Breusch-Godfrey Serial Correlation: 0.0014, Cannot Reject
Heteroskedasticity Test: ARCH: 0.9860, Rejected
Histogram – Normality Test: 0.9857, Rejected

Source: Authors’ Computation using EViews 9.5.

Table 4 shows the ARDL result using ACRT as the dependent variable, with 10 lag for ACRT and 12, 11, 0, 10, 2, 8 lag for TXR, AVAW, GSF, GEXP, LD and AEMP respectively. From the table, it can be deduced that cointegration exists at 10% level of significance with the upper value of 3.23. The value of the f-statistics is 3.492973, greater than the upper bound value. At the levels of 5%, 2.5% and 1%, the result is inconclusive since the computed F-Statistics is between the lower and the upper bound. The Breusch-Godfrey Serial Correlation LM probability is 0.0014 which is less than 0.05, therefore the null hypothesis that of no serial correlation cannot be rejected. The Heteroskedasticity test probability is 0.9860 while the histogram normality probability is 0.9857. Hence, the null hypotheses of heteroskedasticity and errors not normally distributed were rejected at a 5 per cent significance level. Although not serial correlated errors would be desired but cannot only be used to validate the model (Asaleye et al. 2017; Bahmani - Oskooee, Brooks 1999).

Table 5. Model 4: AEMP long-run equation: ARDL (10, 1, 0, 1, 1, 0 and 3)

<table>
<thead>
<tr>
<th>Significance levels</th>
<th>Critical Bounds</th>
<th>F-Statistics Value</th>
<th>Kmax</th>
<th>Hypothesis Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I0 Bound</td>
<td>I1 Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At 10 per cent</td>
<td>1.99</td>
<td>2.94</td>
<td>7.109700</td>
<td>6</td>
</tr>
<tr>
<td>At 5 per cent</td>
<td>2.27</td>
<td>3.28</td>
<td>7.109700</td>
<td>6</td>
</tr>
<tr>
<td>At 2.5 per cent</td>
<td>2.55</td>
<td>3.61</td>
<td>7.109700</td>
<td>6</td>
</tr>
<tr>
<td>At 1 per cent</td>
<td>2.88</td>
<td>3.99</td>
<td>7.109700</td>
<td>6</td>
</tr>
</tbody>
</table>

Diagnostic Checks

Breusch-Godfrey Serial Correlation: 0.9111, Rejected
Heteroskedasticity Test: ARCH: 0.8919, Rejected
Histogram – Normality Test: 0.3760, Rejected

Source: Authors’ Computation using EViews 9.5.

Table 5 presents the ARDL result using AEMP as the dependent variable, with 6 lag for AEMP and 8, 9, 8, 3, 1, 0 lag for TXR, AVAW, GSF, ACRT, LD and GEXP respectively. The table shows the presence of a long-run relationship between the variables at levels of 10%, 5%, 2.5% and 1% level of significance since the F-statistics is
greater than the upper bounds. The study rejected the hypotheses of serial correlation, ARCH effects and errors not normally distributed at 5 per cent significance level.

3.2. Estimated Long-run Behavior (Coefficients)

Table 6. Long-run Coefficients and Error Correction Mechanism

<table>
<thead>
<tr>
<th>Regressors</th>
<th>Dependent Variables’ (Coefficient and Parameters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVAW</td>
<td>TXR (Coefficient) ACRT (Coefficient) AEMP (Coefficient)</td>
</tr>
<tr>
<td>AVAW</td>
<td>-3.854495* [-3.785138] -18.671884 [-0.926374] 0.8363850* [2.062349]</td>
</tr>
<tr>
<td>ACRT</td>
<td>1.639388 [5.309274] -0.926374 [0.926373]</td>
</tr>
<tr>
<td>AEMP</td>
<td>-0.985861 [-0.512511] 26.490556 [0.926373]</td>
</tr>
<tr>
<td>GEXP</td>
<td>0.003676* [2.699776] 0.046291 [2.189407]</td>
</tr>
<tr>
<td>GSF</td>
<td>0.145031 [0.934649] 1.635938* [5.309274]</td>
</tr>
<tr>
<td>GEXP & GSF</td>
<td>0.038518* [-2.710691] -0.034848* [-4.428256] 0.004507 [2.062349]</td>
</tr>
<tr>
<td>LD</td>
<td>0.007210** [2.830960] -0.034848* [1.212113] 0.000623 [2.314970]</td>
</tr>
<tr>
<td>TXR</td>
<td>-0.119495** [-3.065541] -0.01984* [-1.940944] 0.000623 [2.314970]</td>
</tr>
<tr>
<td>C</td>
<td>-8.637099 [-1.322935] 5.982300 [0.488633] -218.221644 [-1.244747] 6.808597* [2.062349]</td>
</tr>
<tr>
<td>ECM</td>
<td>-0.341540* [-6.152827] -0.275817 [-9.572828] -0.071895*** [-7.141627]</td>
</tr>
</tbody>
</table>

Note: ECM represents the error correction mechanism. *, ** and *** indicate significance at the levels of 1, 5 and 10 per cent respectively.

Source: Authors’ Computation using EViews 9.5.

Table 6 presents the cointegration equations; using AVAW as the dependent variable, GEXP, GSF and LD are significant at the level of 5 per cent. AVAW has a positive long-run relationship with GSF and negative long-run relationship with GEXP and TXR. Using TXR as the dependent variable, AVAW, GEXP and ACRT are significant at the level of 1 per cent, while GSF is significant at the level of 5 per cent. TXR has a negative long-run relationship with AVAW, GEXP and GSF and positive with ACRT. Using ACRT as the dependent variable, GEXP, GSF and TXR are significant at the level of 5 per cent. A positive long-run relationship was observed between GEXP and GSF, while negative with TXR. Using AEMP as the dependent variable, AVAW and ACRT are significant at the level of 5 per cent; TXR is significant at the level of 10 per cent. AEMP has a positive long-run relationship with AVAW and ACRT, negative long-run relationship with TXR. Evidence from the result showed that the domestic revenue mobilization indicators (tax revenue and credit) have not promoted productivity in the agricultural sector. This result contradicted the Wagner’s law, and this may be due to resources not efficiently mobilized to prioritize the agricultural sector in Nigeria. The speed of adjustment is given by the ECM, with the values of -0.341540, -0.338963, -0.275653, and – 0.01984 for using AVAW, TXR, ACRT, and AEMP as dependent variables means the economy with converge to initial equilibrium at the speed of 30 per cent, 30 per cent, 28 per cent, and 2 per cent annually respectively.

3.3. Causality Test Results

Table 7. Causality Test Result

<table>
<thead>
<tr>
<th>Variables</th>
<th>Direction of Causality</th>
<th>D_{max}</th>
<th>Optimal Lag</th>
<th>Chi-square Value</th>
<th>Probability Value</th>
<th>Evaluation of Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVAW & AEMP</td>
<td>AVAW \rightarrow AEMP</td>
<td>1</td>
<td>7</td>
<td>10.46090</td>
<td>0.1065</td>
<td>Independent</td>
</tr>
<tr>
<td></td>
<td>AEMP \rightarrow AVAW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVAW & ACRT</td>
<td>AVAW \rightarrow ACRT</td>
<td>1</td>
<td>7</td>
<td>0.666761</td>
<td>0.9952</td>
<td>Independent</td>
</tr>
</tbody>
</table>

1446
Variables Direction of Causality \(D_{\text{max}} \) Optimal Lag Chi-square Value Probability Value Evaluation of Hypothesis

<table>
<thead>
<tr>
<th>Variables</th>
<th>(D_{\text{max}})</th>
<th>(D_{\text{max}})</th>
<th>Chi-square Value</th>
<th>Probability Value</th>
<th>Evaluation of Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ACRT \rightarrow AVAW)</td>
<td>0.450554</td>
<td>27.93824</td>
<td>0.0005</td>
<td>2.962713</td>
<td>0.0043</td>
</tr>
<tr>
<td>(AVAW \rightarrow TXR)</td>
<td>22.36388</td>
<td>15.01401</td>
<td>0.0358</td>
<td>21.73600</td>
<td>0.0028</td>
</tr>
<tr>
<td>(TXR \rightarrow AVAW)</td>
<td>26.44966</td>
<td>18.64093</td>
<td>0.0169</td>
<td>26.44966</td>
<td>0.0009</td>
</tr>
<tr>
<td>(GEXP \rightarrow TXR)</td>
<td>1</td>
<td>7</td>
<td>0.0358</td>
<td>21.73600</td>
<td>0.0028</td>
</tr>
</tbody>
</table>

\(D_{\text{max}} \) is the maximum order of integration. The lags section is done using Hannan-Quinn Information Criteria test at 5% level and the coefficient matrices of the last \(D_{\text{max}} \) lagged vectors in the model are ignored. The error term entering the causality test are uncorrelated, result are available with the authors.

Source: Author’s Computation using EViews 9.5.

The result of the causality test is presented in table 7; variables of interest here are AVAW, AEMP, ACRT, TXR, and GEXP. The causality result suggests bidirectional causality: for agricultural productivity (AVAW) and tax revenue (TXR); agricultural employment (AEMP) and tax revenue (TXR); and government expenditure on the agricultural sector (GEXP) and tax revenue (TXR). No causal relationship between: agricultural productivity (AVAW) and agricultural employment (AEMP); agricultural productivity and agricultural credit (ACRT); and agricultural employment (AEMP) and agricultural credit (ACRT).

4. Discussions and Conclusions

This study examines the long-run and causal relationship between domestic resource mobilization and agricultural productivity. Based on the unit root test, the Auto-regressive distributed lags (ARDL) was used to examine the long-run. Four models were considered in the study, using agricultural productivity, tax revenue, agricultural credit and agricultural employment as dependent variables, which were referred to as Model 1, 2, 3 and 4. Evidence from the result showed the presence of cointegration in all the models. The economic implication of the result is that policy implementation to stimulate growth or development using a target variable will have a long-run relationship with other variables. In model 1, agricultural productivity has a positive long-run relationship with government spending on infrastructures, and negative long-run relationship with government recurrent expenditure on agriculture and tax revenue. The results of both the government recurrent expenditure and tax revenue are due to insufficient mobilization domestic resources towards the agricultural sector in Nigeria. In model 2, tax revenue has a negative relationship with agricultural productivity, government recurrent expenditure on agriculture, while a positive relationship with agricultural credit was depicted. This result indicated that the domestic resource mobilization in Nigeria has not kept pace with the increasing government recurrent expenditure on agriculture. This, on the other hand, may lead to the need for a supplementary resource such as foreign aid to fund the recurrent expenditure in the long-run. Reliance on foreign aid may be volatile to the economy, and as well not suitable to achieve long-term goals since foreign aids are geared towards the solution of short-term goals. So, there is a need to maximize benefit from tax revenue by developing fiscal planning and ensure that resources are allocated to priority sectors such as the agricultural sector.

In model 3, agricultural credit has a negative relationship with agricultural productivity and tax revenue, while it has a positive relationship with government recurrent expenditure on agriculture and government spending on infrastructure. Evidence from this result revealed that growth in agricultural output per capita has not promoted revenue through credit facilities, this might due to inefficient use of resources. In model 4, agricultural employment has a positive long-run relationship with agricultural productivity and agricultural credit. Negative relationship with tax revenue was observed. The implication of the result is that rural investment in the agricultural sector has the potential to increase employment, on the other hand, can reduce the poverty rate and skewness in...
income distribution in Nigeria. Evidence from the causality test revealed that there is a bi-directional relationship between: agricultural productivity and tax revenue; agricultural employment and tax revenue; and government expenditure on the agricultural sector and tax revenue. The economic implication of the result is that policy implementation to promote either of the variables will result in a feedback effect on the other.

Based on the findings, the study recommended that public finance reforms need to be implemented to increase government revenue and promote growth in agricultural sector through the following policies measures: enhancing the quality of tax system in Nigeria in such a way that the increase in tax revenue will not distort the economy, and as well reduce inequality by promoting development in the agricultural sector; need to strengthen the operational capacity of tax administration and improving public accountability; investment in new development should be carefully assessed in terms of profit-oriented through a profit-investment nexus; and finally, there is a need for a framework to ensure tax neutrality, by ensuring a tax policy that will not have an adverse effect on other macroeconomic objectives. Finally, evidence from literature has shown that macroeconomic reforms affect agricultural productivity. This study suggested that future research should investigate the impact of macroeconomic reforms on agricultural productivity in developing economies.

References

[27] OECD. 2010. Effective Mobilization of Domestic Resources By LDCs, Ministerial meeting on enhancing the mobilization of financial resources for least-developed countries’ development, Lisbon, 2-3 October 2010.

