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ABSTRACT 
Adapting the conventional Space Vector modulation (SVM) scheme for modular multilevel cascaded converters 

is complicated as the number of switching vectors increases with the number of voltage levels. This paper 

introduces a  novel SVM scheme that can be applied for the control of modular multilevel cascade converters 

(MMCC) with any number of levels.  Instead of extending a single hexagon to the regions corresponding to the 

number of levels, the proposed method treats the three-phase MMCC as multiple inverters with a phase limb being 

a chain of basic three level H-bridge, five-level flying capacitor, or neutral point clamped inverters. Basic two or 

three level hexagons can be applied to determine the switch states and duty cycles separately within one tier of 

the converter and many such hexagons can be overlapped, with phase shift relative to each other, for the control 

of a complete MMCC. This approach simplifies the modulation algorithm and brings flexibility in shaping the 

output voltage waveforms for different applications. Simulation results confirm the good waveform performance 

of this scheme. An experimental 5-level MMCC, with a total of six H-bridges as the basic modules, is presented 

to validate the advantageous features of the method.  

Key words: Modular Multilevel Cascade Converters, Space Vector Modulation 

I. INTRODUCTION 
Recent development in power converters for high voltage transmission and distribution systems has led to 

widespread interest in modular multilevel cascaded converters (MMCC) [1-6]. Well-established multilevel 

converter topologies, such as the neutral point clamped (NPC) and flying capacitor (FC) forms, all present 

different problems when more levels are added to serve higher voltage applications. For example a 5-level NPC 

has difficulty in maintaining neutral-point voltage balance and has unequal device loss distributions due to series 

connected neutral point clamping diodes [7]. These problems are exacerbated when an NPC structure is extended 

to more than 3 levels [8] and thus it is most suitable for medium voltage applications (2.3 - 6.6kV). The FC 

converter, on the other hand, works well for lower numbers of levels, but when the number of clamping capacitors 

is increased to raise output voltage, the capacitor voltages become difficult to balance, causing poor output voltage 

waveform performance and unequal device voltage stress. The classical cascaded H-bridge converter (CHB), 

using three level full-bridges (3L-FB) as the basic modules in a series chain configuration, can overcome these 
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shortcomings. The CHB has led to the development of the MMCC [9-11], which has the favorable features of 

being modular, hence easy to scale up the voltage level, and having voltage waveforms with very low harmonic 

contents.  The very simple cell structure also reduces the manufacturing costs. The MMCCs have gained attention 

from industry, having applications in grid-connected converters, STATCOM, HVDC transmission systems and 

medium voltage drives  [12]. 

The choice of module topology for an MMCC depends on the type of functionality required from the converter. 

For example, two level half bridge (2L-HB) modules are popular for dc-ac three-phase converters in HVDC 

applications [13-15]. For a STATCOM 3L-FB is required which allows four quadrant power flow operation. 

Besides these two types, current developments in MMCC topologies also consider other structures, particularly 

the 5-level NPC (5L-NPC) and 5-level FC (5L-FC) types [13, 16-19] and their hybrid combinations. The 

advantages of these 5-level modules are that they offer more switching states and voltage levels per module, hence 

with the same number of modules as when using 3L-FBs, the converter output voltage is higher and harmonic 

performance is better. 

An inherent challenge for MMCCs, regardless of the type of modules used, is the increasing complexity of 

modulation control due to the number of discrete output voltage levels being extended by cascading more modules. 

Generally, the well-known selective harmonic elimination technique (SHE) [20-23] or staircase modulation is 

applied, allowing terminal voltage waveforms with very low harmonic contents when the number of modules is 

in the range of many tens. However, the method is cumbersome for MMCCs with high number of modules since 

switching angles need to be accurately estimated for different operating conditions. Computation can be more 

problematic for applications requiring fast dynamic control like STATCOM and machine drives. Currently the 

widely used methods for classical and modular multilevel converters are forms of sine-triangle-based PWM, such 

as level–shifting PWM and phase-shifting PWM, for their simplicity and good waveform performance [24-27].  

The Space Vector Modulation (SVM) scheme offers attractive features and both two and three-dimensional 

versions are widely known and applied [28-35]. However, for an MMCC having many voltage levels per phase, 

using conventional SVM technique, the number of switching states escalates, and  on-line switching vector 

selection and duty cycle calculation become complicated [36-38]. Various types of SVM methods have been 

proposed [39-42] over recent decade to simplify the procedure for classical multilevel and modular multilevel 

cascaded converters.  A common approach involves decomposing the space vector diagram into multiples of two-

level or three-level hexagons [28-30]. For example a three-level space vector plane is divided into six two-level 

hexagons and by noting the position of the reference voltage vector, the appropriate two-level hexagon  and 
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corresponding switching vectors can be determined. Calculation of selected vector duty cycle and selection of 

switching states can then be carried out as in a two level inverter. Extension of this approach to five-level space 

vector plane has also been attempted, and meanwhile optimal switching sequence for achieving good harmonic 

performance and capacitor voltage balance has been proposed [31-34]. The main problem with the space vector 

plane division approach lies in the use of lookup tables for generating the gate pulses for the switching devices. 

As the number of inverter levels increase, there will be an increase in the number of lookup tables as well as their 

size. Another approach relies on an algorithm-based technique which makes use of a 60°-spaced gh coordinate 

system to perform the SVM of a multilevel inverter [38]. SVM technique has also been applied for HVDC MMC 

[39] and switching scheme for the optimized control performance in terms of capacitor voltage balancing, 

circulating current suppression and common-mode voltage reduction has been developed.  

 
This paper presents a novel overlapping hexagon space vector modulation (OH-SVM) technique mainly for the 

control of modular multilevel cascaded converters with full-H bridge and full FC-bridge as sub-modules. The 

rationale of the proposed method bears similarity to the aforementioned space vector division approaches, namely 

it also uses multiple of either two-level hexagons or three-level hexagons.  However, instead of dividing a 

multilevel space vector plane into many hexagons, the proposed method treats each voltage level of the three 

phase limbs as an entity whose switching states are covered by a two-level hexagon. This can be extended to 

three-level hexagons to control MMCC with 5L-FC or 5L-NPC as sub-modules. By overlapping these hexagons 

for multiple voltage levels, the switching state selection and duty ratio calculation can be performed per hexagon 

and per module without involving complicated procedures as are needed when using a single multilevel hexagon 

in the conventional SVM.  This scheme offers simplicity and flexibility for controlling MMCCs having any 

number of chained modules and can give good voltage waveform performance at low switching frequency. The 

paper also covers an optimal switching sequence selection scheme for the case when three-level hexagon is used 

for floating capacitor voltage balance and reduction of switching transitions. 

The paper is organized as follows: Section II presents a review of five different types of modules used to build 

modular multilevel converters. Two of these are used for exploring the proposed SVM scheme. In Section III, a 

brief review of the Multilevel SVM is presented. In Section IV, the principle and analysis of the methods are 

described. Results of simulation studies are given in Section V. An experimental rig of a six module MMCC with 

3L-FB modules built to verify the new SVM method is described in Section VI together with the results obtained. 
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II.    MMCCS WITH DIFFERENT CONVERTER TOPOLOGIES  
An MMCC is constructed by chaining a set of converter cells/modules. One such chain forms a converter phase 

limb and three limbs in star or delta connection constitute a dc-ac converter, also named single star or delta MMCC 

[43], and can be used for STATCOM or machine drive applications. For HVDC application two such chains are 

linked in series to form a converter phase limb, one being connected to the positive dc rail and the other to the 

negative. The ac terminal is at the junction of the chains, and with three such phase limbs, a double star 

configuration is formed [43]. In this work only the single star/delta connected MMCCs are considered. The main 

distinguishing feature of each different MMCC structure is the type of module used. Various module concepts 

exist in literature [13, 17, 44, 45]. Fig.1. shows a single star MMCC in which five different types of modules can 

be used, namely 3L-FB, 5L-FC, 5L-NPC, 5-level FC plus half bridge (5L-FC-H) and, 5-level NPC plus half bridge 

(5L-NPC-H). 

 
Fig.1. MMCC in star connection with different module structure (a) 3L-FB module (b) 5L-FC module 
(c) 5L- FC-H module (d) 5L-NPC module (e) 5L-NPC-H module 

III. REVIEW OF CLASSICAL MULTILEVEL SVM TECHNIQUE 
The SVM technique developed originally for three-phase two-level voltage source inverters offers advantages of 

easy implementation. It also provides a 15.5% higher DC link voltage utilization when compared with sine-

triangle-based PWM scheme [28]. Extending this to control multilevel inverters [31] leads to an increased number 

of switching vectors. For example, a multilevel converter comprising four cascaded half-bridge cells per phase  

has 9 voltage levels (–Vmax to Vmax through 0) and 125 switching state vectors. The overall vector boundary still 

forms a hexagonal as shown in Fig.3 (a), with vertices being the full voltage in each phase. For choosing the 

switching states for this converter and calculating their corresponding duty ratios, the position of the reference 

voltage vector refV  at every sample time instant has to be located.  This can be difficult due to the extended 

hexagon. One method is to divide each of the six hexagon sectors into multiple equal triangles, and check whether 

each triangle encircles the tip of refV . Naturally as the number of voltage levels increases, the numbers of both the 
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switching state vectors and triangle sections increase. For the example 4-cell, 5-level converter it has in total 16 

triangles in one of 6 hexagon sectors as shown in Fig. 3(b) and 96 in total for the whole hexagon. In general, if n 

is the number of voltage levels (from 0 to +Vmax or 0 to –Vmax including 0 volt level) per phase limb, the total 

numbers of triangular regions, nT, is  

2
T )1(6  nn       (1) 

and the number of switching states, nV, required to synthesize a reference voltage for the converter structure shown 

in Fig. 3 is n3. Consequently the modulation process, involving region determination, switching vector selection 

and subsequent duty cycle calculation, becomes complicated. This can be even more cumbersome for controlling 

an MMCC. For example a three-phase 9-level FC-MMCC, as shown in Fig. 2, has two cascaded full-bridge FC 

converter modules per phase limb, so it is regarded as two voltage tiers. Each phase limb’s left-hand-side (LHS) 

half-bridge FCs, A1, B1 and C1, form a three-phase 5-level converter which has 125 switching state vectors. This 

is the same to the RHS half-bridge FCs A2, B2 and C2. For the control of both LHS and RHS converters using the 

conventional multilevel SVM scheme described above, a 5-level hexagon should have two reference voltage 

vectors refV and refV  that are anti-phase to each other as shown in Fig. 3(a), These may lie initially (when t=0) in 

sectors 5 and 2 respectively. Table I shows the small triangular regions the reference voltage vector may be in 

corresponding to the modulation index range from 0.25 to 1. Table II highlights the conditions used in determining 

the specific triangle region according to the voltage vector’s corresponding Į-ȕ component magnitudes as defined 

in equations (6)-(7). Clearly the whole process is more complicated than when controlling the classical multilevel 

converters such as a 5-level NPC. 
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Fig.2. 5-level hexagon SVM implementation on two cascaded 5-Level FCC. 
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Table I: Region selection based on ma=Vref/Vdc 

Modulation index ma Regions 

0.75≤ma≤1 R1ĺR7 

0.5<ma≤0.75 R8ĺR12 

0.25<ma≤0.5 R13ĺR15 

0<ma≤0.25 R16 

 
Fig.3. Conventional Multilevel-SVM (a) Hexagon for a 5-level SVM and (b) Sector 1 of the 5-level hexagon. 

 
Table II: Selection criteria for regions R1ĺR7 

Criteria Regions 

VsĮ>0.75, VSȕ<0.25 R1 

0.5<VsĮ<0.75, VSȕ<0.25, VsĮ +VSȕ>0.75 R2 

0.5<VsĮ<0.75, 0.25<VSȕ<0.5 R3 

0.25<VsĮ<0.5, 0.25<VSȕ<0.5 R4 

0.25<VsĮ<0.5, 0.5<VSȕ<0.75 R5 

VsĮ<0.25, 0.5<VSȕ<0.75, VsĮ +VSȕ<0.75 R6 

VsĮ<0.25, VSȕ>0.75 R7 

IV. OVERLAPPING MULTI-HEXAGON SPACE VECTOR MODULATION (OH-SVM) 
This new space vector modulation scheme simplifies the modulation procedure greatly for MMCCs. There are 

two implementation methods depending on the type of hexagons used. 

A.  OH-SVM using Two-level Hexagons 
This is particularly suitable for MMCCs comprising 3-L FB as sub-modules.  It uses multiple two-level hexagons. 

Each of them defines the switching states of all 3L-FB sub-modules in one tier of an MMCC as seen in Fig.4. As 

mentioned before each full H-bridge sub-module consists of two 2-level half-bridges, there are six of them in a 

tier, forming two three-phase two-level inverters, LHS and RHS ones. While the LHS one synthesizes a reference 

(a) (b) 

B 

A 
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voltage vector refV  , the RHS one synthesizes its 180°counterpart 'refV , both are in one two-level hexagon for 

determining the switching states of all switches in one tier. For an MMCC of 3L-FB having four cascaded tiers 

and generating 9-level voltage, a total of 4 hexagons are required which are projected on one pair of Į-ȕ axes as 

shown in Fig.5. 

The two-level hexagon OH-SVM can also be used for MMCC of 5L-FC modules as shown in Fig.2. Though in 

this case there are only two tiers, in total four hexagons are still needed, two for each tier. These hexagons are 

projected on the same Į-ȕ axes and are phase shifted from each other by an angle ĮSH determined by the 

fundamental reference signal period T, and sample period, TS, and the number of complementary switches per 

phase limb nmp, as[19]: 

  2
2

SH 









T

n
T

mp

S

.       (3)     

Assuming the ratio of the sampling period to the fundamental period is 1/5, equation (3) gives the phase shift 

between each overlapping hexagons (360º/8)/5=9º, resulting in a 2-D representation that contains four interleaved 

hexagons. It is worth noting that each sub-module consists of two either 2-level half-bridge or 3-level FC half-

bridges, hence there are six in total in a tier.  

Since each hexagon is phase shifted by ĮSH radians relative to the next tier below, the angular values of both refV  

and 'refV  in the relevant hexagon are determined by their angles in the 1st hexagon for lowest voltage tier plus a 

multiple of the phase shift ĮSH. Both voltages are time varying sinusoidal functions, thus if the phase angle for  

refV   in the hexagon for the 1st voltage tier at time t is ș(t) rad., that for the mth tier at the same time instant is 

calculated as: 

  radmtt SHm  )1()()(  ,      (4) 

and the corresponding 'refV is displaced by 180º from șm.  

Implementation of OH-SVM involves, firstly, determinations of exact locations of refV  and 'refV in each hexagon, 

hence the switching states to be applied to sub-module switches of each tier. This requires identifying the sector 

number, according to the reference voltage vector phase angle șm(t) from equation (4), at every sample time instant 

in a 2-level hexagon. With multiple overlapped hexagons the sector numbers of the reference voltage vectors in 

each hexagon are different at certain sample instants. This can be obtained from the expression in (5) below which 
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shows the Euclidean division of the perceived angle (șm) by the sector angle (60 0 or ʌ/3), where SN represents the 

current sector number.  

    3mod313)(  mNm St  .     (5) 

According to magnitudes and angles of refV  and 'refV   the switching vectors for these modules and their respective 

duty ratios at each sample instant can be calculated by applying the well-known two-level SVM technique as 

discussed in [46]. Clearly the use of multiple two-level hexagons simplifies the modulation algorithm as compared 

to using one 5-level hexagons; since each of the two-level hexagons comprises only 8 switching states, there are 

no multiple triangular regions , hence no need to find which one of the sixteen triangles, as in the 5-level case, 

containing the reference vectors refV and 'refV . 

It is important to note that by overlapping the hexagons, the method gives equal switching pattern and switch 

utilization for modules at different voltage levels in one phase-leg. Analogous to multilevel sine-triangle phase-

shift PWM scheme [27] with each carrier wave shifted in time, this ensures the floating capacitors of sub-modules 

in the same phase leg being charged and discharged evenly hence their voltages are balanced at the steady-state. 

Fig.6 shows the flowchart for implementing the OH-SVM using 2-level hexagons. The control variables are 

initialized by first computing the overlapping angle between the hexagons. The ĮSH aids in the determination of 

the sectors in which the reference voltage vectors lie in each hexagon. Once the sector is identified, the dwell 

times of the three closest voltage vectors are calculated and applied to control the converter switches of 

corresponding tier. 
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Fig.4. Schematic diagram of a MMCC with four cascaded 3-L H-bridges. 
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Fig.5. Two-level hexagon for OH-SVM highlighting phase shift between each hexagons. 

B. OH-SVM using Three-level Hexagons 
For FC-MMCC modulation, three-level hexagon can also be used. In this case, one tier comprises six FC half-

bridges, hence forming two three-phase FC converters, as shown in Fig.2. For a three-level hexagon there are 27 

switching state vectors as shown in Fig.7 (a), and sector one is given in Fig.7 (b). Naturally, for MMCC in Fig.2 

with only two tiers, two such hexagons, both projected on one pair of Į-ȕ axes are needed, as shown in Fig.7(c). 

The phase shift angle ĮSH between these overlapping 3-level hexagons are evaluated using the same formula (3). 

Hence if the ratio of the sampling time to the fundamental period is 1/5, according to (3) ĮSH= (360º/4)/5=18º, 

resulting in a 2-D representation that contains two interleaved 3-level hexagons, which is twice the angle for the 

2-level hexagon case. Similarly due to the phase shift between hexagons, the angular positions of both refV and

'refV .in each hexagon are also different and are evaluated using equation (4). 
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VŽůƚĂŐĞ VĞĐƚŽƌƐ

VŽůƚĂŐĞ VĞĐƚŽƌ DƵƚǇ 
RĂƚŝŽ CŽŵƉƵƚĂƚŝŽŶ

OƉƚŝŵŝǌĞĚ SǁŝƚĐŚŝŶŐ 
VŽůƚĂŐĞ VĞĐƚŽƌ 

SĞůĞĐƚŝŽŶ

GĂƚĞ PƵůƐĞ 
GĞŶĞƌĂƚŝŽŶ

END  
Fig.6. Flowchart for 2-level hexagon implementation 
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Sector identification 
Compared to the case when using two-level hexagons, this is slightly more complicated. Firstly, it still requires 

determining exact locations of the reference voltage vectors, hence the switching states to be applied to switches 

in each tier. However, this involves identifying the sector number and also locating its vertex in one of the four 

triangles within the sectors at every time instant. Identification of sector where each reference voltage vector lies 

can be determined using (5).  

Region selection 
To find which triangular in the chosen sector the reference voltage vectors are in, considering refV , this is resolved 

by evaluating voltage vector’s corresponding orthogonal components, VSĮ, VSȕ, as: 






 
3

sincos
2

m
m

DC

ref
S V

V
V 

.      (6) 

3
sin m

DC

ref
S V

V
V


  .       (7) 

which are shown in Fig. 7 (b). The values estimated above are then used to identify the relevant triangle according 

to rules given in Table III. For ma> 0.5 the regions are seen to be selected between 1, 2 and 3 see in Fig. 8. 

 
 

ĮSH

Hexagon 2
Hexagon 1

Vref

Vref’

ȕ -axis

Į -axis,A-axis

C-axis

B-axis  
Fig.7. 3-level hexagon for OH-SVM (a) all sectors and reference voltages (b) triangle region detection in sector 1 
(c) phase shift between two hexagons. 

(c) 

(b) (a) 
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Table III: Region selection Criteria )/( DCrefa VVM   

Region1 Region 2 Region3 Region 4 

 
VSĮ> 0.5Ma 

VSĮ< 0.5Ma 

VSȕ< 0.5Ma 

| VSĮ + VSȕ|> 0.5Ma 

 

VSȕ> 0.5Ma 

 

VSĮ< 0.5Ma 

VSȕ< 0.5Ma 

| VSĮ + VSȕ|< 0.5Ma 

 

 
Fig.8. Region selection for ma>0.5. 

Once the correct triangle region is identified, the switching states can be determined as the three vectors located 

closest to the vertices of the chosen region. However for an MMCC with 5L-FC converter sub-modules, each 

location corresponds to four switching states; two of these are independent but the other two give the same voltage 

level with different switching states, due to the inner floating capacitors in the module. For example, the switching 

vectors for sector 1, triangle 1 are 200, 210, 100 and 211 shown in Fig.7 (b). The latter two create redundancy and 

the one to be chosen should be able to re-balance the floating capacitor voltage. The corresponding three duty 

cycles, Ta, Tb and Tc are calculated using formulae in Table IV at every sample instant of duration TS and should 

satisfy the condition: 

cbas TTTT  .       (8) 

Optimal switching state/voltage vector sequence  
The sequence of switching states applied for MMCCs of 5L-FC module follows criteria of obtaining natural 

balancing of the floating capacitor voltages, and having the least number of switches changing states per sample 

(i.e. switch transition), hence reducing switching losses. Selection of the optima switching sequence for satisfying 

the above criteria can be seen from an example as following. Consider the case when refV  is in sector 1, region 1, 

R1, three switching sequences can be applied within a sample period; these are. 

100ĺ200ĺ210ĺ211ĺ211ĺ210ĺ200ĺ100  sequence 1 

210ĺ200ĺ100ĺ210ĺ210ĺ100ĺ200ĺ210  sequence 2 

200ĺ210ĺ211ĺ200ĺ200ĺ211ĺ210ĺ200  sequence 3 
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Each of the 8 switching vectors in one of the above sequences expresses the switching states for three 5L-FC 

phase limbs (either LHS or LHS). Since there are two complementary switch pairs in a phase limb of 5L-FC (i.e. 

Sa1- Sa3 and Sa2- Sa4, as seen in Fig. 9), 100 means phase A limb Sa1 on and Sa2 off, both phases B and C Sa1 on 

and Sa2 are all off,  200 means phase A limb both Sa1 and Sa2 on,  In analyzing these sequence patterns, the 

direction of current flowing in the sub-module is taken to be positive, out to be negative, thus the capacitor Ca1 is 

in charging mode when Sa1 and Sa2 state combination is 1:0, in discharging is 0:1 and bypassing  is 1:1 or 0:0. 

Switch transition Voltage vectors

Pattern 1

Sa1

Sa2

100
000

100
100

110
100

111
100

100
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100
110

100
100

000
100

100 200 210 211

211210200100
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210100200210
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Pattern 3
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100
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100
100

100
100

110
101

100
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100
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200 210 211 200

200211200200

1 2 2

0

221
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Fig.9. Sector 1 region 1 sequence patterns 

All three sequences satisfy the first requirement since they all ensure equal charge/discharge durations of Ca1. 

However in terms of switch transition action, sequence 1 shows the least number of transition compared to the 

other sequences and thus being applied. This method is used in every sample interval in the implementation. 

Table V shows the switching state vector sequence table for implementing the 3-level hexagon SVM where U=Vref 

and V=Vref’ denote the vectors used for the LHS and RHS limbs of the full bridge FC converter in a tier over one 

switching period Ts. Here refV is located in sector 1, region 1 and 'refV is located in sector 4, region 1 of the 3-level 
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hexagon. By convention in SVM, Ts and calculated switching vector times, Ta, Tb, and Tc are split in half and 

arranged as shown in Table V. It can be observed that all floating capacitors of LHS and RHS FC modules are 

being charged and discharged and vice versa, for an equal number of times within a Ts cycle. With this approach 

implemented for all the 24 triangle regions of the 3-level hexagons, optimal natural voltage balancing of the 5L-

FC modules can be achieved. 

Fig.10 shows the flowchart for implementing the 3-level hexagon technique which is similar to that when using 

the 2-level hexagons as shown in Fig. 6. Except it has an additional part for the region selection. 

V. SIMULATION STUDIES  
To validate the overlapping hexagon SVM methods both the 2-level and 3-level hexagon schemes are applied to 

control an MMCC having two 5L-FC bridges per phase limb via simulation. The results are compared with that 

using the conventional multilevel SVM method in terms of waveform quality, switching losses, natural balancing 

capability of the inner flying capacitor and computational complexity. In addition, the 2-level hexagon SVM is 

applied to control an MMCC having four 3L-FB per phase and the results are compared with MMCC of two 

cascaded 5L-FCs per phase.. The parameters of sub-modules 5L-FC and 3L-FB are listed in Appendix (1). 

Table IV: Duty Cycle calculation formulae 
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















  m

DC

ref
sa V

V
TT 

3
sin

3
12  










 m

DC

ref
sa V

V
TT sin

3
2

1  


















  1

3
sin

3

2
m

DC

ref
sb V

V
TT   

















  m

DC

ref
sb V

V
TT 

3
sin

3
12  











 m

DC

ref
sc V

V
TT sin

3
2

 
















  1

3
sin

3

2
m

DC

ref
sc V

V
TT 

 

Region 3 Region 4 











 1sin

3

2
m

DC

ref
sa V

V
TT   

















  m

DC

ref
sa V

V
TT 

3
sin

3

2
 

















  m

DC

ref
sb V

V
TT 

3
sin

3
12  











 m

DC

ref
sb V

V
TT sin

3
2

 

















  m

DC

ref
sc V

V
TT 

3
sin

3

2
 

















  m

DC

ref
sc V

V
TT 

3
sin

3

2
1  

 



OVERLAPPING MULTIPLE HEXAGON SPACE VECTOR SCHEME 

Table V: Vector combination chart showing optimized sequence of switching states for LHS and RHS switches 
when Vref in region 1 sector 1 and Vref’ in region 1 sector 4  

 Green=charging state and Red= discharging state 

START

IŶŝƚŝĂůŝǌĂƚŝŽŶ ŽĨ 
CŽŶƚƌŽů VĂƌŝĂďůĞƐ 

;MĂ͕ ɽŵ͕ Ĩ͕ ĨƐͿ 

OǀĞƌůĂƉƉŝŶŐ ĂŶŐůĞ 
ĮSH DĞƚĞƌŵŝŶĂƚŝŽŶ

SĞĐƚŽƌ IĚĞŶƚŝĨŝĐĂƚŝŽŶ 
ŽĨ ĞĂĐŚ RĞĨĞƌĞŶĐĞ 

VŽůƚĂŐĞ VĞĐƚŽƌƐ

RĞŐŝŽŶ SĞůĞĐƚŝŽŶ

VŽůƚĂŐĞ VĞĐƚŽƌ DƵƚǇ 
RĂƚŝŽ CŽŵƉƵƚĂƚŝŽŶ

OƉƚŝŵŝǌĞĚ SǁŝƚĐŚŝŶŐ 
VŽůƚĂŐĞ VĞĐƚŽƌ 

SĞůĞĐƚŝŽŶ

GĂƚĞ PƵůƐĞ 
GĞŶĞƌĂƚŝŽŶ

END  
Fig.10. Flowchart for 3-level hexagon implementation.  

 
A. Application of OH-SVM schemes to MMCC of 5L-FC Modules  
Fig.11(a)-(f) show the voltage and current waveforms produced respectively  using conventional multilevel SVM 

and those shown in Fig.12(a)-(f) and Fig.13(a)-(f) are respectively from OH-SVM schemes using 2-level hexagon 

and 3-level hexagon. As can be seen, all these schemes lead to the converter generating 9-level (peak to peak) 

output phase voltages with good harmonic performance. However, the voltage and current waveforms generated 

from using the 2-level and 3-level OH-SVM show better performance than that from the conventional multilevel 

SVM method, as shown by its phase and line-line voltage waveforms in Fig. 11. This is also clear from voltage 

spectra and THD values which are all lower than the ones given by the conventional method as listed in Table VI. 

 phase Ta/4 Tb/2 Tc/2 Ta/4 Ta/4 Tc/2 Tb/2 Ta/4 
L R L R L R L R L R L R L R L R 

 
 

Region 
1 

A 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 

0 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 

B 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 

0 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 

C 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 

0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 

  TS/2 TS/2 

  TS 
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For the phase limb output voltage, the harmonics appear as sidebands centered around 8, and 4 times of the actual 

switching frequency for 2-level, 3-level hexagon methods but only 2 times with using conventional SVM, i.e. for 

2-level hexagon:   ofh fkmjf  8 , 3-level hexagon:   ofh fkmjf  4 and for conventional SVM:   ofh fkmjf  2

, where f0 is the fundamental frequency, j=1, 2, 3… and sideband index k=1, 3, 5 …odd integers. For line voltage, 

sideband index, k=1, 5, 7 …odd integers, excluding odd multiples of 3. 

The THD values for the phase and line-line voltage waveforms are 28.22%, 12.7% for 3-level hexagon and 

22.89%, 8.47% for 2-level hexagon. The differences in these values are due to the fact that for the 3-level hexagon 

more harmonic elements appear as the sideband around the 4th multiple of the switching frequency, whilst for the 

2-level hexagon these harmonics are significantly lower and only appear as sidebands centered around 8mf. 

From the above spectra analysis it can be seen that using the same switching frequency fs for the sub-modules at 

each tier, the effective switching frequencies ∑fs, seen across the resultant phase voltage waveforms for each 

methods are increased. This difference is due to the time staggering or overlapping effect between voltage tiers. 

For conventional SVM method  ∑fs=2fs due to unipolar switching, while for 3L and 2L hexagon methods, the 

effective switching frequencies are respectively 4fs and 8fs . In other words, there are more transitions in the output 

waveform because they are spaced out in time. The switching losses are not increased because the number of 

switch transitions per cycle, in each tier, is not increased.  Thus if using the 2L hexagon overlapping method, for 

obtaining the same effective frequency as that of the classic SVM, the actual switching frequency for sub-modules 

can be lowered to only 1/4th of that used for the conventional method. If 3L hexagon is used the actual switching 

frequency can be a half. The reduction of switching frequency certainly reduces the switching losses and is not at 

the expense of the voltage waveform quality see Fig.14. 

With adequate switching vector sequence applied, both the 3-level hexagon and conventional SVM can ensure 

natural balance of inner floating capacitor voltages. However the capacitor voltage fluctuations when using the 2-

level hexagon are seen to be the lowest, followed by the 3-level hexagon and then conventional SVM with values 

being ±0.6V, ±1.5V and ±10V respectively. This is attributed to the overlapping nature of both 2 and 3-level 

hexagons. 

Based on the SIMULINK models, the computational load for each SVM algorithm is compared and listed in Table 

VII. According to the sum of arithmetic operations, such as addition, subtraction, division, multiplication and 

trigonometric functions, the classical multilevel SVM requires the highest computational burden amongst three, 

the 2-level OH-SVM is the most computationally efficient method. 
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Fig.11. Classical multilevel SVM simulations (a) phase voltage (b) Line-line voltage (c) Phase voltage frequency 
spectra & THD (d) Line-line voltage frequency spectra & THD (e) load phase current (f) Module floating 
Capacitor voltage waveforms.  

 

 

 
Fig.12. 3-level OH-SVM simulations (a) phase voltage (b) Line-line voltage (c) Phase voltage frequency spectra 
& THD (d) Line-line voltage frequency spectra & THD (e) phase current (f) Module floating Capacitor voltage 
waveforms.  
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Fig.13. 2-level OH-SVM simulations (a) phase voltage (b) Line voltage (c) Phase voltage frequency spectra & 
THD (d) Line-line voltage frequency spectra & THD (e) load phase current (f) Module floating Capacitor voltage 
waveforms.  

 

 
Fig.14. 2-level OH-SVM simulations (a) phase voltage (b) Line voltage (c) Phase voltage frequency spectra & 
THD and (d) Line-line voltage frequency spectra & THD at 300 Hz switching frequency. 
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Table VI: Comparison of OH-SVM Schemes 

Phase shifted-SVM schemes 2-level 
hexagon 

3-level 
hexagon 

Conventional 
SVM 

Phase voltage THD (%) 22.82 27.83 37.04 
Line voltage THD (%) 8.39 11.76 16.39 

Phase Current THD (%) 2.35 2.50 3.79 
FC voltage Variation (%) ±1.2% ±3% ±20% 

 
Table VII: Comparison of Computational Load for the SVM Schemes 

Computational 
Task in each 

section 

2-level 
hexagon 

3-level 
hexagon 

Conventional 
SVM 

Vref& Vref’ angle  8 4 2 
Sector Selection  8 4 2 
Region Selection - 96 384 

Duty Ratio 
calculation 

144 288 576 

Total  160 392 964 

 
B. Application of 2-Level OH-SVM to MMCCs of different Module Topologies  
The MMCCs chosen for this study are the ones using, either four 3L-FB, two 5L-FC or 5L-FC-H (shown in Fig.1 

(c)) modules. With the same total DC voltage, and modulation index these should generate the same output voltage 

levels, while controlled by the 2-level OH-SVM. Figs.15 (a)-(e) show results from the MMCC of four 3L-FB 

modules per phase and Figs.16 (a)-(g) are those from that having two 5L-FC-H modules per phase. 5L-FC results 

are already shown in Fig. 13. Clearly the waveforms from 3L-FB and 5L-FC show superior performance, as they 

have the same phase and line-line voltage THDs (Fig.15 (c), (d) and Fig.13 (c), (d)) which are all lower than that 

of  5L-FC-H, which are 34.13% and 21.31%,  respectively.  

In this hybrid case the LHS two FCs requires four 2-level hexagons with equal phase shift between them but the 

RHS two full-bridge requires only two that has an overlapping angle of twice the hexagons on the LHS.  
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Fig.15. 2-level OH-SVM control of MMCC of 3L-FB (a) phase voltage (b) Line voltage (c) Phase voltage spectra 
& THD (d) Line-line voltage spectra & THD (e) phase current 

 

 

 
Fig.16. 2-level OH-SVM for MMCC of 3L-FC-H (a) Phase voltage (b) Line-line voltage (c) phase voltage spectra 
& THD (d) Line voltage spectra & THD (e) Phase current  (f) Modules floating capacitor voltage waveform.  

Variations of both phase and line-line voltage THDs against the modulation index ma are investigated for the three 

different MMCCs.  The results are illustrated in Figs.17 (a) and (b). It can be seen that both 3L-FB and 5L-FC-

based MMCC give comparably low THD values for ma ≥ 0.5. The MMCC with 5L-FC-H modules has shown 

giving the poorest waveform performance amongst the three according to THD values. This is due to that the two-

level half bridge on either LHS or RHS can only offer three voltage levels, 0 volt and ±2VDC, so giving less degree 

of freedom to shape the voltage waveform. 

The above simulation studies show clearly the advantage of using OH-SVM of 2-Level hexagon scheme, i.e. it 

results in very low floating capacitor voltage ripple for FC and FC-H modules, this leads to the use of smaller 

capacitors hence reducing the costs and footprint of the converters. 
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(a)                                                            (b) 

Fig.17. THD for  MMCCs of 5L-FC, 5L-FC-H and 3L-FB modules using 2-Level hexagon OH-SVM (a) phase 
voltages  (b) line to line voltages generated.  

The effectiveness of the proposed method when the number of sub-modules per phase is increases is analyzed for 

nmp=8 3L-FB sub-modules. The voltage waveforms and their corresponding spectra quality plots highlights the 

waveform quality  with switching frequency fs=300 Hz (see Fig. 18). 

 

Fig.18. 2-level OH-SVM control of 17-level MMCC using 3L-FB as sub-module (a) Phase voltage (b) Line-line 
voltage waveforms (c) phase voltage spectra & THD (d) Line voltage spectra & THD.  

VI. EXPERIMENTAL TEST AND RESULTS  
An experimental MMCC using two cascaded 3L-FB sub-modules per phase has been built to verify the 2-level 

hexagon OH-SVM scheme. The switching devices used are IRF740IGBT, each rated at 400V, 10A and the 

corresponding bypass diodes rated 450V, 10A. Each of 6 modules is powered by a 20V dc power source. The 

algorithm is implemented using a DSP device, eZdspF28335 from Spectrum Digital [47]. The pulse signals from 

DSP are applied to drive the cascaded 3L-FB switches. Experimental setup of this simple MMCC is shown in 

Fig.19 and the system parameters are listed in Appendix (2).  
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Fig. 19. MMCC Experimental Setup 

The sampling/switching frequency is 250 Hz and modulation index is 0.8. Connected across the three phase of 

MMCC is a balanced R-L load of 7.5Ω and 10mH per phase. Fig. 20 (a)-(d) show, respectively, the plots of the 

output phase and line-to-line voltage waveforms and spectra which conform to the simulation results in Fig 15. 

 

 
Fig.20. OH-SVM Experimental results: (a) Phase output voltage (b) Line output voltage, (c) Phase voltage 

spectrum and (d) Line voltage spectrum. 

VII. CONCLUSIONS 
The paper presented a novel space vector modulation scheme for three-phase modular multilevel cascaded 

converters. The method is based on using multiple of overlapped 2-level or 3-level hexagons each copes with one 

tier of the converter. The approach has the following advantages; the overlapping effect gives equal switch pattern 

and utilization for modules at different voltage levels in one phase-leg, hence it brings 3L-FB capacitor voltage 

balance. The method simplifies the switching vector selection and duty cycle calculation procedure compared to 
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the conventional multilevel SVM and is flexible in shaping the output voltage waveforms for different 

applications. The method requires lower switching frequency hence incurring lower switching losses for obtaining 

voltage waveforms of the harmonic performance.  Simulation results show that the best waveform performance 

is obtained by using the 2-level hexagon scheme, since it gives the lowest phase and line-to-line voltage THD 

values. With adequate switching sequence selection, this scheme also show being able to balance the iner flying 

capacitor voltages of the 5L-FC. Simulation results show it gives the least capacitor voltage ripples compared 

with that when using the 3-level hexagon or conventional multilevel SVM.  Experimental verification has been 

performed on a 6-module H-bridge MMCC using 2-level hexagon scheme. The practical results presented validate 

the method and show good waveform performance  comparable to the simulation output.  

Appendix 
(1). Parameters of the simulated MMCC system: 
Modulation index (Ma): 0.85; 
Switching frequency (fs): 1.5 kHz; 
Rated DC voltage rating of each FC and FC-H module: 100V; 
Rated DC voltage rating of each FB module: 50V; 
Rated ac current of each converter limb (rms): 10A; 
Floating capacitors (C): 560µF; 
Number of series connected inverter modules in each phase leg (FC & FC-H) N:2; 
Number of series connected inverter modules in each phase leg (FB) N:4; 
Load resistance (RL): 20Ω; 
Load inductance (LL): 20mH. 
 
(2).Parameters of the experimental MMCC system: 
Modulation index (Ma): 0.8; 
Valve type: Infineon IGBT; 
Switching frequency (fs): 400Hz; 
Rated DC voltage rating of each modules: 20V; 
Rated ac current of each converter limb (rms): 10A; 
Number of series connected inverter modules in each phase leg N:2; 
Load resistance (RL): 7.5Ω; 
Load inductance (LL): 10mH; 
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