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Comparison of response surface methodology
and hybrid-training approach of artificial neural
network in modelling the properties of concrete
containing steel fibre extracted from waste tyres
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Abstract: The study presents a comparative approach between Response Surface
Methodology (RSM) and hybridized Genetic Algorithm of Artificial Neural Network
(GA-ANN) in predicting the water absorption, compressive strength, flexural
strength, split tensile strength and slump for steel fibre reinforced concrete. The
effects of process variables such as aspect ratio, water-cement ratio and cement
content were investigated using the central composite design of response sur-
face methodology. This same experimental design was used in training the
hybrid-training approach of artificial neural network. The predicting ability of
both methodologies was compared using the Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Model Predictive Error (MPE) and Absolute Average
Deviation (AAD). The response surface methodology model was found more
accurate in being able to predict compared to the hybridized genetic algorithm of

the artificial neural network.
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PUBLIC INTEREST STATEMENT

The necessity for sustainability has brought
about the possible inclusion of several waste
materials in concrete production. The steel fibre
extracted from discarded tyres is an example of
such waste material that can be used in con-
crete. Research in this area has found the mate-
rial suitable for use as reinforcement in concrete.
Steel fibres have been identified as having the
advantage of reducing the brittle nature of con-
crete and as well improve the performance of
concrete. However, there is a need to enhance
the acceptability of this material for use in con-
crete. This has brought about the use of effective
predictive modelling techniques to inform an
early decision on the fresh and hardened prop-
erties of concrete reinforced with steel fibre.
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1. Introduction

The annual global generation of end-of-life tyres, which is about 1.4 billion units, is estimated to
reach 2.5 billion units in 2032 based on a maximum lifespan of 10 years for vehicular tyres (Di
Mundo, Petrella, & Notarnicola, 2018; Sebola, Mativenga, & Pretorius, 2018). The bulkiness, shear
volume and resilience of waste tyres make the case of recycling of their principal components
indispensable. More importantly, the practical approach of reducing the associated environmental
hazards attributed to illegal burning of waste tyres is to reuse them. Many researchers have shown
interest in this waste due to its huge quantity (Atoyebi, Odeyemi, Bello, & Ogbeifun, 2018; Oliveira,
Silva, Abreu, & Fernandes, 2013; Pacheco-Torgal, Ding, & Jalali, 2012; Shen et al.,, 2013; Su, Yang,
Ling, Ghataora, & Dirar, 2014; Thomas & Gupta, 2016; Thomas, Gupta, & Panicker, 2016).

However, the low recycling rates of waste tyres reported in some developed countries and most
developing countries are attributable to the absence of a regulatory framework for the collection,
disposal, inefficient recycling process and perceived low economic value of the waste products
(Mpanyana, 2009). While the possibility of recycling the rubber component of waste tyre has been
extensively researched, the steel fibre component has not received considerable attention (Mucsi,
Szenczi, & Nagy, 2018). One of the promising ways of reusing the steel component of waste tyres is
in concrete. This can be done by incorporating the steel fibre component into the concrete mix
chiefly to reduce or eliminate the brittleness of concrete amongst other benefits.

According to (Nasir, 2009), the addition of conventional steel fibre at a volumetric fraction of 1%
approximately doubles the construction cost which tends to limit the use of steel fibres to special
applications. These waste tyres provide an alternative approach to obtaining steel fibres at little or
no cost for use in concrete. Meanwhile, there is a need also to achieve a proper mix proportion of
concrete constituents which accommodates the inclusion of such steel fibres. The optimization of
these constituents helps to improve the performance of Steel Fibre Reinforced Concrete (SFRC). In
addition to optimization, it is also necessary to explore predictive models that should help in; fast-
tracking the design process, reducing laboratory trials and ensuring the reliability of the SFRC for
effective application in the construction industry (Nasir, 2009).

Response surface methodology (RSM) is an effective modelling technique that could be used to
fine-tune the SFRC components mix to achieve desirable properties based on specific/target
applications. Quantitative characterization of the efficiency of steel fibres extracted from waste
tyres could provide a guide on the use of steel fibres for durable and cost-effective mix design. This
study was mainly conducted to develop a procedure for making an informed early decision on the
fresh and hardened properties of concrete reinforced with steel fibre extracted from waste tyres.
The application of statistical tools such as RSM provides useful information that can be used to
refine the design criteria and specification for better performance of a system. Another advantage
of statistical tools is the ability to perform quick prediction once fitted into a function (Chopra,
Kumar, & Kumar, 2015). RSM is a valuable tool for designing experiment, building of models and
optimization of search conditions to provide better outputs by fitting effect factors to quadratic
functions (Alyamac, Ghafari, & Ince, 2017; Desai, Survase, Saudagar, Lele, & Singhal, 2008;
Mohammed, Khed, & Nuruddin, 2018; Simsek, Uygunoglu, Korucu, & Kocakerim, 2018; Tyagi,
Rana, Kumari, & Jagadevan, 2018).

In recent times, the use of Artificial Neutral Network (ANN) which is a mathematical model of the
biological neural system promises to be a useful method for experimental modeling and optimization
due to its ability to understand the interactions behind complex processes (Ebrahimpour, Rahman, Ean
Ch’ng, Basri, & Salleh, 2008). The application of Artificial Neural Networks (ANNs) for the prediction and
optimization of concrete properties is relatively new. Research in this area has shown that it is one of the
best tools for this purpose (Hacene, Ghomari, Schoefs, & Khelidj, 2014). The application of ANN is
dynamic and comes with hybridization. Hybridization can be achieved by combining intelligent techni-
ques such as fuzzy logic, neural networks, genetic algorithm and expert system. For example, when
applied to a wide range of real-life problems, they were found to be effective since the limited experience
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of one technique can be overcome by the other technique (Nauck & Kruse, 1997, 1999; Yager & Filev,
2017). Most intelligent techniques can learn from examples which makes them suitable for many
applications. Genetic Algorithm (GA) is a form of artificial intelligence technique that imitates the
principles of biological evolution. This algorithm involves a general search approach that is stochastic.
In this approach, a new population of individuals is generated from the existing populations. GA
computes a new population by applying stochastic operators such as selection, crossover and mutation
for an initially random population. The searching feature present in GA is population-driven and not
trajectory-driven like the gradient descent and LM algorithm (Desai et al., 2008; Ghaffari et al., 2006). The
hybridized Genetic Algorithm of Artificial Neural Network (GA-ANN) is another approach that could be
used for refining the design criteria for enhanced system performance. According to Fang, Wang, &
Zhang (2005), the genetic algorithm employs an evolutional search approach to obtain an optimal
solution which differs from the one point at a time approach employed in the gradient descent and
Levenberg Marquardt algorithms. When the genetic algorithm is limited in fine-tuning local search
within a problem, it is usually integrated with a gradient descent algorithm. The process is referred to
as hybrid-training approach. Therefore, the application of the hybrid-training approach enables the
weakness of one algorithm to be compensated for by the other (Ghaffari et al., 2006).

This investigation was aimed at developing and comparing the performance RSM and ANN-GA
models in predicting the properties of steel fibre reinforced concrete. Both the fresh and hardened
properties of steel fibre reinforced concrete were explored in the study (water absorption, com-
pressive strength, flexural strength, split tensile strength and slump). The effects of variables such
as aspect ratio, water-cement ratio and cement content were utilized for this process. The derived
models were then compared using RMSE, MAE, MPE and AAD to identify the most suitable
technique for predicting the properties of steel fibre reinforced concrete.

1.1. Comparison of ANN and RSM in literature

In the last few decades, there have been increasing interests by researchers to investigate the
suitability of RSM and ANN modelling techniques in solving practical problems as presented in Table
1 while a comparison between both approaches is presented in Figure 1. (Hacene et al., 2014) studied
probabilistic modelling of compressive strength of concrete using response surface methodology and
neural networks. They concluded that the application of either RSM or ANN modelling techniques is
a practical approach with a promising future depending on the objectives to be achieved (Hacene
et al,, 2014). (Esfahanian, Nikzad, Najafpour, & Ghoreyshi, 2013) modelled and optimized ethanol
fermentation using saccharomyces cerevisiae. They observed that the prediction by ANN was slightly
more precise. Similarly, Pilkington, Preston, & Gomes (2014) compared the performance of both
techniques on the extraction of artemisinin from Artemisia annua. They appraised the models through
the coefficient of determination (R%) and the Absolute Average Deviation (AAD) which showed that the
ANN was superior to the RSM model in predicting artemisinin recovery.

Prakash Maran, Sivakumar, Thirugnanasambandham, & Sridhar (2013) applied ANN and RSM in
modelling and prediction of mass transfer parameters during osmotic dehydration of Carica
Papaya using standard error of prediction, RMSE, MAE, coefficient of determination and MPE. The
results showed that a properly trained ANN model was found to be more accurate in prediction as
compared to RSM model. Desai et al. (2008) assessed the performance of ANN-GA and RSM in
fermentation media optimization. The ANN-GA was observed to have a better predicting and
generalization capacity than the RSM. Bourquin, Schmidli, van Hoogevest, & Leuenberger (1998)
explored the applicability of the ANN modelling techniques in studying the data set with the
nonlinear relationship of galenical study on a solid dosage form. This was done using the degree
of data fitting and predicting abilities of the developed models. Better results were achieved for the
model using ANN methodology concerning data fitting and predicting ability. Moghaddam &
Khajeh (2015) compared the ability of RSM and ANN in Microwave-Assisted Extraction Procedure
to Determine Zinc in Fish Muscles. The predictions by ANN were observed to be more accurate
when compared to that of the RSM.
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Figure 1. Comparison between
RSM and ANN process.

Table 1. Comparison of ANN and RSM in literature

Authors Process Results Remarks
ANN RSM Superior
(Hacene et al,, Concrete R? = 0.959 R? = 0.948 ANN
2014) compressive
strength
(Pilkington et al., Drug extraction COD (R?) =0.991 COD (R%) =0.903 | ANN
2014) AAD = 1.37% AAD = 4.57%
(Esfahanian et al, | Ethanol R? =0.996 R? =0.985 ANN
2013) fermentation R® =0.997 R’ =0.993
(Bourquin et al., Pharmaceutical R?=0.708 R? = 0.997 ANN
1998) tablet development R? = 0.849 R? =0.998
(Ravikumar et al., Distillery spent R? = 0.999 R? = 0.9830 ANN
2013) wash treatment
(Lakshminarayanan | Weld quality R? =0.9918 R?=0.970 ANN
& Balasubramanian, MPE = 0.259 MPE = 0.770
2009)
(Desai et al., 2008) | Fermentation R?=0.99 R?=0.93 ANN
media optimization RMSE = 0.11 RMSE = 0.31

Type of Techniques

!

RSM ANN
Regression Supervised learning
¥ fearning *

Interpolation Generalization

Parameters Weights
Independent Input
Variables
Dependent Output
variables

Ravikumar, Renuka, Sindhu, & Malarmathi (2013) investigated the suitability of RSM and ANN in
the modelling and optimization of distillery spent wash treatment with Phormidium valderianum.
The predictions obtained for both model were close to experimental values but ANN revealed
reasonable performance over RSM. The above illustrations showed the vast application RSM and
GA-ANN; however, the application of both techniques in modelling the properties of steel fibre
reinforced concrete is not readily available.

Syaidathul, Izni, & Ibrahim (2012) utilized steel fibres extracted from waste tyres in reinforcing

concrete. It was observed that the inclusion of steel fibres in concrete mix reduced slump with
stepwise increase in (0%, 2%, 4%, 8%, 1%) fibre content. (Qi, 2003) observed a similar trend with
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industrially manufactured steel fibre. Therefore, it could be inferred that both industrially manu-
factured steel fibre and waste tyres steel fibre have a similar influence on workability measured in
terms of slump. Chen & Liu (2005) also observed that the presence of fibres in the concrete mix has
a holding effect which prevents segregation of aggregates, surface bleeding and as well
encourages uniformity of the mix for better performance. However, it has been recommended
that the volumetric fraction of fibre content should not exceed 2% to avoid undesirable conditions
such as the formation of balls which can be attributed to the presence of too many fibres (Mastali
& Dalvand, 2016). These steel fibres are usually discrete, short length and defined by the aspect
ratio (length to diameter ratio) in the range of 20 to 100 (ACI Committee 544, 1996). An aspect
ratio of less than 200 was also suggested by (Neocleous, Tlemat, & Pilakoutas, 2006) and
(Pilakoutas, Neocleous, Dipl-ing, & Inge, 2006) for steel fibre obtained from waste tyres. It will be
worthwhile to predict the properties of steel fibre reinforced concrete by RSM and ANN using
varying aspect ratio, water-cement ratio and cement content.

2. Experimental materials, procedure and design

2.1. Experimental materials

The materials used in the study were the grade 42.5 Portland Cement, limestone powder as filler,
steel fibre, high range water reducing admixture, fine river sand as fine aggregates, granite stones
as coarse aggregates and potable water. The grading and physical properties of the cement and
aggregates are presented in Table 2. The steel fibres were extracted from waste tyres by manual
shredding. A flow chart of the process is presented in Figure 2. Further details of materials used,
mix proportion and procedure have been detailed in an earlier publication (Awolusi et al., 2019b).

2.2. Mixing and casting

The concrete mix was prepared with a tilting drum mixer. The revolution speed of the mixer was
60 rpm and the total mixing time varied as presented in Figure 3. 100 mm X 100 mm X 100 mm
cubes were cast for compressive strength, water absorption and split tensile strength tests. For
flexural strength test, beams with dimension 100 mm X 100 mm X 400 mm were used, while the
slump was determined using a slump cone of height 300 mm, a bottom diameter of 200 mm and
a top diameter of 100 mm. The slump test was done immediately after casting while the speci-
mens for compressive strength, water absorption, split tensile strength and flexural strength tests
were prepared by placing the concrete into the already lubricated mould and compaction was

Table 2. Grading and physical properties of cement and aggregate

Sieve size (mm) Cumulative percentage retained (%)

Cement Limestone Fine sand Granite

powder

20 100
12.5 62.87
9.5 36.39
6.3 11.31
4,75 2.87
2.36 100 100 100 0.22
1.18 99.93 99.75 89.9 0.18
0.6 99.84 99.77 56.6 0.17
0.425 99.28 99.16 441
0.3 84.72 91.65 349 0.15
0.15 8.72 16.76 7.77 0.12
0.075 1.86 1.87 1.02 0.09
Specific gravity 3.05 2.48 2.58
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Figure 2. Extraction process for
steel fibre.

Figure 3. Simplified flow chart Cement ‘ o - Powder (mn | M| e - 24

for the production of steel fibre Ao e Pm:dar ; S; . ! g S"':dw i M:m”‘ T
reinforced concrete (Awolusi Limestone | ' Sand 1 %5 T i asu'r (R "| Maing
et al,, 2019b). Ponder ‘ — Superplstiszer

done in three layers. These specimens were covered in damp sacks in the laboratory for 24
h before demoulding and curing in water until the time of testing. The tests for compressive,
split tensile and flexural strengths were done at 28 days while the water absorption test was done
after 24 h of immersing in water.

2.3. Development of quadratic response surface model

The experimental design often plays a major role in determining the total number of experiments
required during the investigation. The study utilized the central composite design of RSM in deter-
mining the required number of experiments. According to (Pilkington et al.,, 2014), the central
composite rotatable design provides an opportunity for introducing axial points into the experimen-
tal design. A total of 20 experimental runs were generated using the central composite design. The
central composite design is generally used to ensure accurate prediction when examining larger
spread conditions in which the complexity of the model is not known by providing five levels for each
process variable. The architecture for the RSM modelling technique is presented in Figure 4. The
process variables considered in the study at different levels are given in both actual and coded terms
as follows:

« Aspect ratio (A): 170(+1.68979), 140(+1),95(0), 50(-1), 19.32(-1.68979)
» Water-cement ratio (B): 0.45(+1.68979), 0.40(+1),0.33(0),0.25(-1),0.2(-1.68979)
» Cement content (C): 45.1(+1.68979), 40(+1), 32.5(0),25(-1), 19.(-1.68979)

Figure 4. The RSM architecture.

()]

«-) B )
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Figure 5. Operation of RSM.

The RSM is usually represented by a quadratic model expressed in a second-order equation as
presented in Equation (1). The equation gives the relationship that exists between the three
independent variables.

6 6 6

Y=0ao+ X ax1 + Y X G XX (1)
i=1 i=1i=1

Where Y is the predicted value, g is a constant and a; and a;; are the regression coefficients of the

RSM model. The X; and X; are the factor variables (Esfahanian et al., 2013). The operation of the

RSM is presented in Figure 5.

2.4. Design of artificial neural network

Previous researchers have highlighted the disadvantage of using the gradient descent algo-
rithm in ANN training because of the likelihood of being caught in a local minimum error
function and have proposed an evolutionary approach known as genetic algorithm (GA).
However, the inability of GA to provide fine-tuned local search has brought about the hybridi-
zation of GA and backpropagation. A block diagram for the operation of genetic algorithm is
presented in Figure 6. This approach has been recommended for ANN training (Ghaffari et al.,
2006). The study obtained a supervised ANN in predicting the five properties of steel fibre
reinforced concrete investigated using the hybridized genetic algorithm. The genetic algorithm
with incremental backpropagation was used to achieve the hybridized genetic algorithm. The
incremental backpropagation is a form of the gradient descent algorithm. The experimental
data obtained from the central composite design of RSM were divided into two sets, namely,
the training set and testing set. The training set contained 15 experimental data, while the
testing set contained five experimental data.

The general ANN architecture consists of three layers which are the input, hidden and output
layers. The number of neurons in both the input and output layers is usually determined by the
process variables and the investigated responses, respectively. The number of neurons in the
hidden layer was determined by trial and error process. This was done to minimize the
deviation of predictions from experimental data. The ANN architecture for the study is pre-
sented in Figure 7. From this Figure, it can be observed that a single hidden layer with 15
neurons was used, while the number of neurons in the input and output layers correspond with
the three process variables (Aspect ratio, Water-cement ratio and Cement content) and the
five properties investigated (water absorption, compressive strength, flexural strength, split
tensile strength and slump) respectively. Further increase in the neurons of the hidden layer
presents the possibility of overfitting the ANN. The transfer function of the network for both the
hidden and output layers was sigmoidal. The weight is an adjustable quantity that is associated
with the connection of neurons. Scaled input data were introduced into the hidden layer by the
neurons in the input layer through weights. These weights are the thin lines shown in Figure 7
connecting successive layers.

RSM

Indentifying

independent variable I:DI Experimental design ':{)I Output data processing |
I

and range

Optimization of the mathematical model <::| Analysis of the obtained result |
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Figure 6. Operation of genetic
algorithm.

Figure 7. The ANN architecture.

Begin by generating a random population of chromosomes

I

Evaluating the fitness of each chromosome in the population

J

| Creation of a new population |

]

| Selection of two-parent chromosome from the population according to fitness

i

| Crossover with probability to form new offspring |

| Mutation of new offspring |

I

| Placing of new offspring in a new population |

I

Utilization of newly generated population further running of algorithm

I

Testing to ensure end condition is satisfied

2.5. Comparison tools

Outpuls

For this study, the performance of both techniques was evaluated using the following error
functions; RMSE, MAE, MPE and AAD. The equations representing each error function are presented
by 1 to 4 (Pilkington et al., 2014; Prakash Maran et al., 2013).

2
RMSE — Z?:l (R'; — Rip)

1 n
MAE = = 3 |Rie = Rop|
i=1

mpe() = 220 5

n iz

10, (Rp—Rie
AAD = | — _— 100
(n ;gl( Rie )) .

Rie — R;
R;p

(1)

()

3)

(4)
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Figure 8. (a): RSM and ANN-GA
comparison for R1. (b): RSM and
ANN-GA comparison for R2. (c):
RSM and ANN-GA comparison
for R3. (d) RSM and ANN-GA
comparison for R4. (e): RSM and
ANN-GA comparison for R5.

where n represents the number of experimental runs, R;. is the ith value of experimental run and
Rip is the ith value predicted.

3. Results and discussion

3.1. Performance of RSM and ANN models

The predicting ability of RSM and ANN-GA were assessed in the study. The aforementioned
techniques predicted all properties investigated at 20 experimental points. Details of these are
presented in Figure 8(a-e). These figures represent the experimental versus predicted RSM and
ANN values for Water absorption (R1), Compressive strength (R2), Flexural strength (R3), Split
tensile strength (R4) and Slump (R5) respectively. These figures showed that the predicted RSM
values were closer to the experimental data than the predicted ANN-GA values. The RMSE, MAE,
MPE and AAD presented in Table 3 and Figure 9(a-d) were used to compare the experimental
values with RSM and ANN-GA. Although both techniques were observed to predict the responses to
a certain level of accuracy as presented in Figure 9(a-d), however, for all responses (R1-R5) the
RSM was able to provide a better prediction than ANN-GA.

Table 3 presents the RMSE, MAE, MPE and AAD values obtained for RSM and ANN-GA for all
properties investigated. The above mentioned statistical parameters were used to evaluate the
predicting ability of both modelling techniques in comparison with the experimental data. From

50
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Figure 9. (a): Chart of the root-
mean-square error for all
response. (b): Chart of the mean
absolute error for all response.
(c): Chart of the model predic-
tion error for all response. (d):
Chart of the absolute average
deviation for all response.

Table 3. Evaluation of the ANN-GA and RSM model

Central composite design

Parameters RSM ANN Investigated Property
RMSE 0.105 0.4170 Water Absorption
MAE 0.079 0.1950
MPE 0.401 2.4389
AAD 0.065 0.1245
RMSE 1.577 7.0922 Compressive Strength
MAE 1.409 2.3874
MPE 0.262 0.3416
AAD 0.022 0.6329
RMSE 0.639 1.8389 Flexural Strength
MAE 0.274 0.4696
MPE 0.238 0.3836
AAD 0.078 0.3105
RMSE 0.312 1.0558 Split Tensile Strength
MAE 0.265 0.4975
MPE 0.231 0.3836
AAD 0.0132 0.5772
RMSE 1.236 2.4054 Slump
MAE 1.007 1.1439
MPE 0.497 0.6764
AAD 0.134 0.6790
(@) s (b)
3
6 2.5
S 2
=4 mRMSE for RSM 1,
"4 <15 ® MAE for RSM
ERMSE for ANN 2
2 MAE for ANN
0.5
0 - 0 -
Rl R2 R3 R4 RS RL R2 R3 R4 RS
(©) (d)
3 0.8
2.5 0.7
5 | 0.6
w 0.5 -
o BMPEforRSM 2
=15 Zo4 | AAD for RSM
14 = MPE for ANN 03 - = AAD for ANN
0s 0.2
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Figure 10. Comparison of
experimental values (red) with
predicted values (blue). The
straight line represents the lin-
ear regression (Awolusi et al.,
2019a).

the table, it was generally observed that the RMSE, MAE, MPE and AAD values obtained for the RSM
model were lower than those obtained for the ANN-GA. It is a common knowledge that the lower
the values of these error functions, the better is the predicting ability of the model. This informed
the choice of RSM over ANN-GA.

3.2. Derived model using RSM

From the Analysis of Variance (ANOVA), it was observed that the quadratic model containing a few
cubic terms predicted the investigated properties of steel fibre reinforced concrete. The second-
order model for water absorption, compressive strength, flexural strength, split tensile strength
and slump are given by Equations (5)-(9) with a coefficient of determination of 0.86, 0.95, 0.98,
0.93 and 0.98, respectively. Equations (5)-(9) give the regression coefficients for the main, inter-
action, quadratic and cubic terms (Awolusi et al., 2019a).

Water Absorption (R1) = +0.16 + 0.062A — 0.14B — 0.14C + 0.098AB + 0.1AC + 0.17BC

5)
— 0.036A% + 0.047B% — 0.082C% + 0.14ABC + 0.25A%B + 0.25A%C {

Compressive strength (R2) = + 32.99 — 1.15A — 4.46B + 6.24C — 1.24AC — 5.04BC + 0.19B?
—5.11C% + 0.67B2C + 1.93BC?
(6)

Flexural strength (R3) = + 6.82 + 0.24A + 1.23B + 1.17C — 0.19AB — 0.38AC — 0.80BC — 1.01B?
—0.37C%> — 0.69B% C — 1.04BC?
(7

Split tensile (R4) = 4.65 + 0.095A + 1.22B + 1.07C 4 0.21AB + 0.016AC + 0.16BC — 0.25A?

(8)
+ 0.56B2 — 0.42C2 + 0.14ABC — 1.54A%B + 0.71A%C

Slump (R5) = +10.95 — 0.54A + 8.62B + 7.73C — 1.62AB + 5.88AC + 2.63BC — 4.04A% + 2.27B?
+1.74C% — 4.88ABC — 6.25A?B — 6.85A%C

9)
3.3. Derived model using ANN-GA
The generalization capability of ANN—GA was assessed by carrying out a linear regression on the test
data set. The experimental and predicted values are presented in Figure 10. The model coefficient of
determination (R?) and the absolute fraction of variance (AFV) obtained from the plot were 0.94 and
0.929, respectively. The value of R* and AFV obtained signifies a close relationship between the
experimental values and the predicted values. Atoyebi, Awolusi et al. (2018) have identified that
the closer this value is to one (1) the better is the predicting ability of the obtained model.

3.4. Mean effect plot
Figures 11-13 present the main effect plot for the three process variables. These plots were used
to understand the effect of linear terms on the interested response (Rostamiyan, Fereidoon,

30 Y=0.78883X + 0.884, R>=0.94 , AFV = 0.929

@ Predicted Data

Predicted Data

B Experimental Data
Rl £

0 10 20 30 40
Experimental Data
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Mashhadzadeh, Ashtiyani, & Salmankhani, 2015). The main effect plot for variable A which repre-
sents the aspect ratio of steel fibre is displayed in Figure 11(a-e). From Figure 11(a,b,e) there was
no obvious trend for water absorption, compressive strength and slump with respect to changes in
aspect ratio. However, the least water absorption, highest compressive and reduced slump were
observed with an aspect ratio of 140. The split tensile strengths were observed to increase with the
increase in aspect ratio up to 140 which implies that a high aspect ratio is required for improved
split tensile strength. The highest flexural strength (Figure 11(c)) was observed to be constant for

aspect ratios between 19 and 50, while a further increase in aspect ratio led to a decrease in
flexural strength.

Figure 12(a-e) presents the main effect plot for water-cement ratio (variable B). From Figure 12
(a-c) it was observed that low water absorption, high compressive and flexural strengths could be
achieved with water-cement ratio of 0.25. The split tensile strength (Figure 12(d)) was observed to
increase up to a water-cement ratio of 0.4 whereby a further increase in water-cement ratio
decreases the split tensile strength. From Figure 12(e), it could be observed that reasonable slump
for good workability can be achieved with a water-cement ratio range of 0.25 and 0.33. Figure 13
(a-e) present the main effect plot for variable C (cement content). From Figure 13(a) it was
observed that with a cement content of 32.5%, the lowest water absorption was achieved. From
Figure 13(b,c), the highest compressive and flexural strengths were achieved with a cement
content of 40%. For split tensile strength, no clear trend was observed; however, lower cement
content seemed to have enhanced split tensile strength (Figure 13(d)). Figure 13(e) presents the
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Figure 12. Main effect plot of
water—-cement ratio for all
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effect of variable C (cement) on the slump. The slump was observed to have increased with
increasing cement content which is in agreement with the findings of (Marar & Eren, 2011).
According to the gradient of the main effect plots, it was generally observed that the process
variable B (water-cement ratio) had more influence on the responses when compared to the other
two variables (Aspect ratio and cement content). This assertion is supported by the analysis of the
relative importance of process variables obtained for the hybridized genetic algorithm of ANN
presented in Figure 14. From Figure 14 it could be observed that the water-cement ratio has the
most significant influence on the responses followed by the aspect ratio and lastly the cement
content. This observation corroborates the recommendations of (Mindess, Young, & Darwin, 2003).
They identified water-cement ratio as playing a primary role in strength increase while the
presence of fibres provides a modest increase in strength. Rostamiyan et al. (Rostamiyan et al,,
2015) similarly observed that the presence of fibres improves mechanical properties and reduces
the crack propagation of composite materials. However, Simées et al. (Simdes, Costa, Dias-da-
Costa, & Julio, 2017) identified that the presence of fibres in the concrete matrix reduces homo-
geneity and increases the porosity of the concrete. This could be a disadvantage to the use of steel
fibre since reports by Claisse, Elsayad, & Shaaban (1997); they have identified that the more open
the pore sizes of concrete, the more vulnerable the materials are to degradation caused by
penetrating substances. These substances which are mostly liquid move from the surrounding
environment into the concrete matrix and may cause irreparable damage to the material. The rate
of water absorption is closely related to the sizes of the pores in the concrete. Therefore, the study
has provided regression models that could help in proportioning the constituents of steel fibre
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reinforced concrete with minimum water absorption, reasonable slump and improved mechanical
properties.

3.5. Optimization by RSM

The optimization of all responses was done using the optimization tool of RSM. The following
settings are available for the optimization process; maximize, minimize, in range and target. For
the purpose of this study the compressive, flexural split tensile strengths were set at maximum
while the water absorption and slump were set at minimum and in range, respectively. Under this
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condition, the water absorption, slump compressive, flexural and split tensile strengths were
0.94%, 7.65 cm, 42.69 N/mm?, 7.97 N/mm?and 5.23 N/mm? respectively. The process variables
used to achieve this purpose were 140 for aspect ratio (A), 0.26 for water-cement ratio (B) and
40% for cement content (C). The validations of these experimental results are available in an
earlier study (Awolusi et al., 2019b).

4. Conclusion

The study examined the effects of process variables such as aspect ratio, water-cement ratio and
cement content on the properties of steel fibre reinforced concrete. For a better understanding of these
process variables, two modelling approaches were used, namely, RSM and ANN. Both modelling tech-
niques have identified water-cement ratio as the most significant process variable influencing the
investigated properties of steel fibre reinforced concrete. This study found out that although there
have been far-reaching recommendations in favour of ANN for modelling complex nonlinear relation-
ships of process variables, the RSM model performed better in predicting the investigated properties of
steel fibre reinforced concrete measured by the RMSE, MAE, MPE and AAD. This may be attributed to the
fact that the nature of RSM is structured towards exhibiting the contributions of all coefficients in the
regression models which makes it efficient in recognizing the insignificant process variables and their
interactions. Also, RSM also identifies insignificant quadratic terms thereby reducing the complexity of
the problem and providing better prediction in this study. The inability of ANN-GA to outperform RSM
may be attributed to the fact that five properties of steel fibre reinforced concrete were being predicted
simultaneously. ANN-GA training and testing require huge search space to provide optimal solutions for
concrete with low water absorption, high compressive, flexural splitting tensile strengths and reasonable
slump. From the findings of this study, it could be inferred that RSM performs better in prediction when
limited data are used for predicting several properties. In summary, the current study has identified RSM
as a preferred option for modelling when several properties of a single product (in this case steel fibre
reinforced concrete) are simultaneously investigated with limited experimental data. The study has
provided regression models that could help in proportioning the constituents of concrete reinforced with
steel fibre extracted from discarded tyres. The aim was to achieve SFRC with minimum water absorption,
reasonable slump and improved mechanical properties. This serves as an alternative to industrial fibre
which is relatively expensive and as well provides an avenue where a huge amount of waste tyres
dumped in environments will be used in concrete for friendly disposal of waste tyres.

Acknowledgements Citation information

Financial support from the Tertiary Education Trust Fund
(TETFUND) for carrying out experimental works is highly
appreciated. The authors would like to also acknowledge
Advanced Chemical Technology Ikeja Lagos, manufacturer
of the high range water reducing admixture used in the
study. We also express sincere gratitude to Engr. Taiwo
Abiola of the Department of Chemical Engineering, Cape
Peninsula University of Technology, South Africa for his
support.

Funding
The authors received no direct funding for this research.

Author details

Temitope F. Awolusi®

E-mail: temitopeawolusiO6@gmail.com

Oluwaseyi L. Oke!

E-mail: seyioke@hotmail.com

Olufunke O. Akinkurolere®

E-mail: funke_akinkurolere@yahoo.co.uk

Olumoyewa D. Atoyebi?

E-mail: atoyebi.olumoyewa@lmu.edu.ng

ORCID ID: http://orcid.org/0000-0001-9669-3179

1 Department of Civil Engineering, Ekiti State University,
Ado-Ekiti, Nigeria.

2 Department of Civil Engineering, Landmark University,
Omu-Aran, Nigeria.

Cite this article as: Comparison of response surface
methodology and hybrid-training approach of artificial
neural network in modelling the properties of concrete
containing steel fibre extracted from waste tyres,
Temitope F. Awolusi, Oluwaseyi L. Oke, Olufunke O.
Akinkurolere & Olumoyewa D. Atoyebi, Cogent Engineering
(2019), 6: 1649852.

References

ACI Committee 544. (1996). State-of-the-art report on
fiber reinforced concrete. ACI Committee 544 report
544.1R-96. Detroit: American Concrete Institute.

Alyamac, K. E., Ghafari, E., & Ince, R. (2017). Development
of eco-efficient self-compacting concrete with waste
marble powder using the response surface method.
Journal of Cleaner Production, 144, 192-202.
doi:10.1016/j.jclepro.2016.12.156

Atoyebi, O. D., Awolusi, T. F., & Davies, I. E. E. (2018).
Artificial neural network evaluation of
cement-bonded particle board produced from red
iron wood (Lophira alata) sawdust and palm ker-
nel shell residues. Case Studies in Construction
Materials, e00185. doi:10.1016/j.cscm.2018.
e00185

Atoyebi, O. D., Odeyemi, S. O., Bello, S. A., & Ogbeifun, C. O.
(2018). Splitting tensile strength assessment of

Page 15 of 18


https://doi.org/10.1016/j.jclepro.2016.12.156
https://doi.org/10.1016/j.cscm.2018.e00185
https://doi.org/10.1016/j.cscm.2018.e00185

Awolusi et al., Cogent Engineering (2019), 6: 1649852
https://doi.org/10.1080/23311916.2019.1649852

<X: cogent.-engineering

lightweight foamed concrete reinforced with waste
tyre steel fibres. International Journal of Civil
Engineering and Technology, 9(9), 1129-1137.

Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., Sojobi, A. O.,
& Aluko, O. G. (2019a). Performance comparison of
neural network training algorithms in the modeling
properties of steel fiber reinforced concrete. Heliyon,
5(1), e01115. doi:10.1016/j.heliyon.2018.e01115

Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., & Sojobi, A. O.
(2019b). Application of response surface methodol-
ogy: Predicting and optimizing the properties of
concrete containing steel fibre extracted from waste
tires with limestone powder as filler. Case Studies in
Construction Materials, 10, €00212. doi:10.1016/j.
cscm.2018.e00212

Bourquin, J., Schmidli, H., van Hoogevest, P., &
Leuenberger, H. (1998). Advantages of Artificial
Neural Networks (ANNs) as alternative modelling
technique for data sets showing non-linear rela-
tionships using data from a galenical study on
a solid dosage form. European Journal of
Pharmaceutical Sciences, 7(1), 5-16. doi:10.1016/
$0928-0987(97)10028-8

Chen, B., & Liu, J. (2005). Contribution of hybrid fibers on
the properties of the high-strength lightweight con-
crete having good workability. Cement and Concrete
Research, 35(5), 913-917. doi:10.1016/j.
cemconres.2004.07.035

Chopra, P., Kumar, R., & Kumar, M. (2015, March). Artificial
neural networks for the prediction of compressive
strength of concrete. International Journal of Applied
Sciences & Engineering, 13, 187-204.

Claisse, P. A., Elsayad, H. 1., & Shaaban, 1. G. (1997).
Absorption and sorptivity of cover concrete. Journal
of Materials in Civil Engineering, 9(3), 105-110.
doi:10.1061/(ASCE)0899-1561(1997)9:3(105)

Desai, K. M., Survase, S. A., Saudagar, P. S,, Lele, S. S., &
Singhal, R. S. (2008). Comparison of artificial neural
network (ANN) and response surface methodology
(RSM) in fermentation media optimization: Case
study of fermentative production of scleroglucan.
Biochemical Engineering Journal, 41(3), 266-273.
doi:10.1016/j.bej.2008.05.009

Di Mundo, R., Petrella, A., & Notarnicola, M. (2018).
Surface and bulk hydrophobic cement composites by
tyre rubber addition. Construction and Building
Materials, 172, 176-184. doi:10.1016/].
conbuildmat.2018.03.233

Ebrahimpour, A., Rahman, R. N. Z. R. A,, Ean Ch’ng, D. H.,
Basri, M., & Salleh, A. B. (2008). A modeling study by
response surface methodology and artificial neural
network on culture parameters optimization for
thermostable lipase production from a newly iso-
lated thermophilic Geobacillus sp. strain ARM. BMC
Biotechnology, 8(1), 96. doi:10.1186/1472-6750-8-96

Esfahanian, M., Nikzad, M., Najafpour, G., &

Ghoreyshi, A. A. (2013). Modeling and optimization of
ethanol fermentation using Saccharomyces cerevi-
siae: Response surface methodology and artificial
neural network. Chemical Industry and Chemical
Engineering Quarterly, 19, 1-11. doi:10.2298/
CICEQ120210058E

Fang, J., Wang, S., & Zhang, C. (2005). Application of
Genetic Algorithm (GA) trained artificial neural net-
work to identify tomatoes with physiological
diseases. Nature and Science, 3(2), 52-58.

Ghaffari, A., Abdollahi, H., Khoshayand, M. R.,
Bozchalooi, I. S., Dadgar, A., & Rafiee-Tehrani, M.
(2006). Performance comparison of neural network
training algorithms in modeling of bimodal drug

delivery. International Journal of Pharmaceutics, 327
(1), 126-138. doi:10.1016/j.ijpharm.2006.07.056

Hacene, B. S. M. A,, Ghomari, F., Schoefs, F., & Khelidj, A.
(2014, April). Probabilistic modelling of compressive
strength of concrete using response surface metho-
dology and neural networks. Arabian Journal for
Science and Engineering, doi:10.1007/5s13369-014-
1139-y

Lakshminarayanan, A. K., & Balasubramanian, V. (2009).
Comparison of RSM with ANN in predicting tensile
strength of friction stir welded AA7039 aluminium
alloy joints. Transactions of Nonferrous Metals Society
of China, 19(1), 9-18. doi:10.1016/51003-6326(08)
60221-6

Marar, K., & Eren, 0. (2011). Effect of cement content and
water/cement ratio on fresh concrete properties
without admixtures. International Journal of the
Physical Sciences, 6(24), 5752-5765. doi:10.5897/
1JPS11.188

Mastali, M., & Dalvand, A. (2016). Use of silica fume and
recycled steel fibers in self-compacting concrete
(SCC). Construction and Building Materials, 125,
196-209. doi:10.1016/j.conbuildmat.2016.08.046

Mindess, S., Young, F. J., & Darwin, D. (2003). Concrete
(2nd ed.). Upper Saddle River, NJ, USA: Prentice Hall,
Pearson Education, Inc.

Moghaddam, M. G., & Khajeh, M. (2015). Comparison of
response surface methodology and artificial neural
network in predicting the microwave-assisted
extraction procedure to determine zinc in fish
muscles. Food and Nutrition Sciences. (January 2011).
doi: 10.4236/fns.2011.28110.

Mohammed, B. S., Khed, V. C., & Nuruddin, M. F. (2018).
Rubbercrete mixture optimization using response
surface methodology. Journal of Cleaner
Production, 171, 1605-1621. doi:10.1016/j.
jclepro.2017.10.102

Mpanyana, L. M. (2009). Waste tyre management pro-
blems in South Africa and the possible opportunities
that can be created through the recycling thereof.
Pretoria: University of South Africa.

Mucsi, G., Szenczi, A., & Nagy, S. (2018). Fiber reinforced
geopolymer from synergetic utilization of fly ash and
waste tire. Journal of Cleaner Production, 178,
429-440. doi:10.1016/j.jclepro.2018.01.018

Nasir, B. (2009). Steel fiber reinforced concrete made with
fibers extracted from used tyres. Ethiopia: Addis
Ababa University.

Nauck, D., & Kruse, R. (1997). A neuro-fuzzy method to
learn fuzzy classification rules from data. Fuzzy Sets
and Systems, 89(3), 277-288. doi:10.1016/S0165-
0114(97)00009-2

Nauck, D., & Kruse, R. (1999). Neuro-fuzzy systems for
function approximation. Fuzzy Sets and Systems, 101
(2), 261-271. doi:10.1016/S0165-0114(98)00169-9

Neocleous, K., Tlemat, H., & Pilakoutas, K. (2006, October).
Design issues for concrete reinforced with steel
fibers, including fibers recovered from used tires.
Journal of Materials in Civil Engineering, 18(5),
677-685. doi:10.1061/(ASCE)0899-1561(2006)
18:5(677)

Oliveira, J. R. M,, Silva, H. M. R. D., Abreu, L. P. F,, &
Fernandes, S. R. M. (2013). Use of a warm mix asphalt
additive to reduce the production temperatures and
to improve the performance of asphalt rubber
mixtures. Journal of Cleaner Production, 41, 15-22.
doi:10.1016/j.jclepro.2012.09.047

Pacheco-Torgal, F., Ding, Y., & Jalali, S. (2012). Properties
and durability of concrete containing polymeric
wastes (tyre rubber and polyethylene terephthalate
bottles): An overview. Construction and Building

Page 16 of 18


https://doi.org/10.1016/j.heliyon.2018.e01115
https://doi.org/10.1016/j.cscm.2018.e00212
https://doi.org/10.1016/j.cscm.2018.e00212
https://doi.org/10.1016/S0928-0987(97)10028-8
https://doi.org/10.1016/S0928-0987(97)10028-8
https://doi.org/10.1016/j.cemconres.2004.07.035
https://doi.org/10.1016/j.cemconres.2004.07.035
https://doi.org/10.1061/(ASCE)0899-1561(1997)9:3(105)
https://doi.org/10.1016/j.bej.2008.05.009
https://doi.org/10.1016/j.conbuildmat.2018.03.233
https://doi.org/10.1016/j.conbuildmat.2018.03.233
https://doi.org/10.1186/1472-6750-8-96
https://doi.org/10.2298/CICEQ120210058E
https://doi.org/10.2298/CICEQ120210058E
https://doi.org/10.1016/j.ijpharm.2006.07.056
https://doi.org/10.1007/s13369-014-1139-y
https://doi.org/10.1007/s13369-014-1139-y
https://doi.org/10.1016/S1003-6326(08)60221-6
https://doi.org/10.1016/S1003-6326(08)60221-6
https://doi.org/10.5897/IJPS11.188
https://doi.org/10.5897/IJPS11.188
https://doi.org/10.1016/j.conbuildmat.2016.08.046
https://doi.org/10.4236/fns.2011.28110
https://doi.org/10.1016/j.jclepro.2017.10.102
https://doi.org/10.1016/j.jclepro.2017.10.102
https://doi.org/10.1016/j.jclepro.2018.01.018
https://doi.org/10.1016/S0165-0114(97)00009-2
https://doi.org/10.1016/S0165-0114(97)00009-2
https://doi.org/10.1016/S0165-0114(98)00169-9
https://doi.org/10.1061/(ASCE)0899-1561(2006)18:5(677)
https://doi.org/10.1061/(ASCE)0899-1561(2006)18:5(677)
https://doi.org/10.1016/j.jclepro.2012.09.047

Awolusi et al., Cogent Engineering (2019), 6: 1649852
https://doi.org/10.1080/23311916.2019.1649852

<X: cogent.-engineering

Materials, 30, 714-724. doi:10.1016/j.
conbuildmat.2011.11.047

Pilakoutas, K., Neocleous, K., Dipl-ing, H. T., & Inge, B.
(2006). Reuse of tyre steel fibres as concrete
reinforcement. Proceedings of the ICE-Engineering
Sustainability, 157(3), 131-138. (September 2004).

Pilkington, J. L., Preston, C., & Gomes, R. L. (2014).
Comparison of response surface methodology (RSM)
and artificial neural networks (ANN) towards efficient
extraction of artemisinin from Artemisia annua.
Industrial Crops and Products, 58, 15-24. doi:10.1016/
j.indcrop.2014.03.016

Prakash Maran, J., Sivakumar, V.,
Thirugnanasambandham, K., & Sridhar, R. (2013).
Artificial neural network and response surface
methodology modeling in mass transfer parameters
predictions during osmotic dehydration of Carica
papaya L. Alexandria Engineering Journal, 52(3),
507-516. doi:10.1016/j.aej.2013.06.007

Qi, C. (2003). Quality assessment of plastic shrinkage
cracking and its impact on the corrosion of steel
reinforcement. Indiana: Purdue University.

Ravikumar, R., Renuka, K., Sindhu, V., & Malarmathi, K. B.
(2013). Response surface methodology and artificial
neural network for modeling and optimization of
distillery spent wash treatment using Phormidium
valderianum BDU 140441. Polish Journal of
Environmental Studies, 22(4), 1143-1152.

Rostamiyan, Y., Fereidoon, A., Mashhadzadeh, A. H.,
Ashtiyani, M. R., & Salmankhani, A. (2015). Using
response surface methodology for modeling and
optimizing tensile and impact strength properties of
fiber orientated quaternary hybrid nano composite.
Composites Part B: Engineering, 69, 304-316.
doi:10.1016/j.compositesb.2014.09.031

Sebola, M. R., Mativenga, P. T., & Pretorius, J. (2018).
A benchmark study of waste tyre recycling in South
Africa to European union practice. Procedia CIRP, 69,
950-955. doi:10.1016/j.procir.2017.11.137

Shen, W., Shan, L., Zhang, T., Ma, H., Cai, Z., & Shi, H.
(2013). Investigation on polymer-Rubber aggregate
modified porous concrete. Construction and Building

Materials, 38, 667-674. doi:10.1016/j.
conbuildmat.2012.09.006

Simoes, T., Costa, H., Dias-da-Costa, D., & Julio, E. (2017).
Influence of fibres on the mechanical behaviour of
fibre reinforced concrete matrixes. Construction and
Building Materials, 137, 548-556. doi:10.1016/j.
conbuildmat.2017.01.104

Simsek, B., Uygunoglu, T., Korucu, H., &
Kocakerim, M. M. (2018). Analysis of the effects of
dioctyl terephthalate obtained from polyethylene
terephthalate wastes on concrete mortar:
A response surface methodology based desirability
function approach application. Journal of Cleaner
Production, 170, 437-445. doi:10.1016/j.
jclepro.2017.09.176

Su, H,, Yang, J, Ling, T., Ghataora, G. S., & Dirar, S. (2014).
Properties of concrete prepared with waste tyre rub-
ber particles of uniform and varying sizes. Journal of
Cleaner Production, 1-9. doi:10.1016/j.
jclepro.2014.12.022

Syaidathul, A., Izni, R., & Ibrahim, S. (2012). Mechanical
properties of recycled steel tire fibres in concrete.
Universiti Teknologi Malaysia.

Thomas, B. S., & Gupta, R. C. (2016). A comprehensive
review on the applications of waste tire rubber in
cement concrete. Renewable and Sustainable Energy
Reviews, 54, 1323-1333. doi:10.1016/j.
rser.2015.10.092

Thomas, B. S., Gupta, R. C., & Panicker, V. J. (2016).
Recycling of waste tire rubber as aggregate in con-
crete: Durability-related performance. Journal of
Cleaner Production, 112, 504-513. doi:10.1016/j.
jclepro.2015.08.046

Tyagi, M., Rana, A., Kumari, S., & Jagadevan, S. (2018).
Adsorptive removal of cyanide from coke oven was-
tewater onto zero-valent iron: Optimization through
response surface methodology, isotherm and kinetic
studies. Journal of Cleaner Production, 178, 398-407.
doi:10.1016/j.jclepro.2018.01.016

Yager, R. R, & Filev, D. P. (2017). Adaptive defuzzification
for fuzzy systems modeling. (2), 135-142.

Page 17 of 18


https://doi.org/10.1016/j.conbuildmat.2011.11.047
https://doi.org/10.1016/j.conbuildmat.2011.11.047
https://doi.org/10.1016/j.indcrop.2014.03.016
https://doi.org/10.1016/j.indcrop.2014.03.016
https://doi.org/10.1016/j.aej.2013.06.007
https://doi.org/10.1016/j.compositesb.2014.09.031
https://doi.org/10.1016/j.procir.2017.11.137
https://doi.org/10.1016/j.conbuildmat.2012.09.006
https://doi.org/10.1016/j.conbuildmat.2012.09.006
https://doi.org/10.1016/j.conbuildmat.2017.01.104
https://doi.org/10.1016/j.conbuildmat.2017.01.104
https://doi.org/10.1016/j.jclepro.2017.09.176
https://doi.org/10.1016/j.jclepro.2017.09.176
https://doi.org/10.1016/j.jclepro.2014.12.022
https://doi.org/10.1016/j.jclepro.2014.12.022
https://doi.org/10.1016/j.rser.2015.10.092
https://doi.org/10.1016/j.rser.2015.10.092
https://doi.org/10.1016/j.jclepro.2015.08.046
https://doi.org/10.1016/j.jclepro.2015.08.046
https://doi.org/10.1016/j.jclepro.2018.01.016

Awolusi et al., Cogent Engineering (2019), 6: 1649852 “lk;' Cogent y=la g | nee ri N g

https://doi.org/10.1080/23311916.2019.1649852

cogent--0a

®

© 2019 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0
license..

You are free to:

Share — copy and redistribute the material in any medium or format.

Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Engineering (ISSN: 2331-1916) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:

«  Immediate, universal access to your article on publication

»  High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online

»  Download and citation statistics for your article

*  Rapid online publication

«  Input from, and dialog with, expert editors and editorial boards

+  Retention of full copyright of your article

*  Guaranteed legacy preservation of your article

«  Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Page 18 of 18





