
Open Access Library Journal 
2018, Volume 5, e4413 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1104413  Mar. 27, 2018 1 Open Access Library Journal 
 

 
 
 

Sensitivity Analysis of Dengue Model with 
Saturated Incidence Rate 

M. M. Ojo1, B. Gbadamosi2, Adebimpe Olukayode3, Ogundokun R. Oluwaseun2 

1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA 
2Department of Computer Science Landmark University, Omu-Aran, Nigeria 
3Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria 

 
 
 

Abstract 
Dengue is a flavivirus, transmitted to human through the bites of infected 
Aedes aegypti and A. albopictus mosquitoes. In this paper, we analyze a new 
system of ordinary differential equations which incorporates saturated inci-
dence function, vector biting rate and control measures at both the aquatic 
and adult stages of the vector (mosquito). The stability of the system is ana-
lysed for the dengue-free equilibrium via the threshold parameter (reproduc-
tion number) which was obtained using the Next generation matrix tech-
niques. Routh Hurwitz criterion along together with Descartes’ rule of signs 
change established the local asymptotically stability of the model whenever 

0 1R <  and unstable otherwise. Furthermore, the sensitivity analysis was car-
ried out and the numerical simulation reveals that increasing the proportion 
of human antibody and putting into place a control strategy that minimize the 
vector biting rate are enough to reduce the infection of the disease in the pop-
ulation to its barest minimum. 
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1. Introduction 

Over the years, mathematical models and computer simulations have been 
known to be useful experimental tools which are used in building and examing 
theories, evaluating quantitative speculations, giving answers to particular ques-
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tions and determining sensitivities to changes in parameter values. Understand-
ing the epidemiology of emerging and re-emerging infectious diseases in a pop-
ulation produces a healthy environment for living. Mathematical models are 
used in likening, designing, implementing, evaluating and optimizing several 
detection, prevention and control plans.  

Dengue fever is one of the infectious diseases that have continued to be a sub-
ject of major concern to the public health. It is known to be a mosquito-borne 
viral infection which is endemic in more than a hundred countries in the world 
[1] [2] [3] [4], usually in a tropic and sub-tropical regions of the world [5]. In 
recent years, dengue transmission preponderates in urban and semi-urban areas 
[1] [5] where a figure of 50 to 390 million people worldwide in a year are in-
fected which leads to half a million hospitalizations [6] [7] [8] with an approx-
imate of 25,000 deaths [4] [6] [9]. 

The dengue disease has been well known clinically for over 2 centuries, but 
the etiology of the disease remains unknown until year 1944 [10] [11]. It was 
first recognized in the Philippines in 1953 and Thailand in 1955 [10] [11] [12]. 
The threat of the outbreak now exists in Europe which its first local transmission 
was reported in France and Croatia in 2010, while cases have occurred in Florida 
(USA) and Yunnan (province of China) in 2013 [1] [5]. 

Dengue Hemorrhagic fever being an infectious tropical disease is caused by an 
infective agent called dengue virus, of the family flaviviridae which has four dis-
tinguished serotypes denoted by I, II, III and IV [12]. The virus is transmitted to 
humans by bites of Aedes mosquitoes [Aedes aegypti and A. albopictus are the 
primary transistors]. The infection remains in mosquito till death [8]. 

Dengue infection causes a range of illness in humans, from clinically in ap-
parent, to severe and fatal hemorrhagic disease [11] [12]. The incubation period; 
which is the time between infection and appearance of the symptoms in the 
body is from 3 - 14 days, but often times it ranges from 4 - 7days [4] [6] [13], 
and is generally observed clearly in older children and adults [11]. Dengue fever 
is characterized by sudden onset of fever, frontal headache, nausea, vomiting 
and some other symptoms.  

The use of mathematics in explaining the epidemiology of dengue fever has 
been extensively studied by many researchers over years. Notable among these 
studies are [2] [6] [10] [13] [14] [15] [16]. In this study, since dengue fever is 
spread between two-interacting populations (human-vector), we design and 
analyses a mathematical compartmental model that considers the human popu-
lation and the vector population (mosquito). We extended the earlier model [6] 
by incorporating a “Standard force of infection” with the proportion of an anti-
bodies produced by human in response to the incidence of infection caused by 
mosquito and vice-versa. Also, an extension of the work is to consider some 
control effects or precautionary measures of the vector in the absence of vacci-
nation. These measures includes: Larvicides for the Aquatic stage of the vector 
which prevents the vector from breeding, Naled and EPA-registered insects’ re-
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pellants to prevent getting bitten against the adult stage of the vectors.  

2. Formulation of the Model 

The formulation of dengue model requires the interaction between two-interacting 
populations (human-vector). The total human population at continuous-time t 
denoted by ( )hN t  is subdivided into six compartments namely: susceptible 
humans ( hS ), exposed humans ( hE ), infectious humans ( hI ), migrated popula-
tion ( hM ), treatment class ( hT ), recovered humans ( hR ). Hence, the total hu-
man population ( )hN t  is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )h h h h h h hN t S E I M T R= + + + + +             (1) 

Similarly, the total vector population at continuous-time t denoted by ( )vN t  
is subdivided into four compartments namely: aquatic class ( vA ), susceptible 
mosquitoes ( vS ), exposed mosquitoes ( vE ), infectious mosquitoes ( vI ). Hence, 
the total vector population ( )vN t  is given by 

( ) ( ) ( ) ( ) ( )v v v v vN t A S E I= + + +                  (2) 

The dynamics of the dengue considered here is formulated and studied under 
the following assumption: 

1) the model assumes a homogeneous mixing of the human and vector (mos-
quito) populations, so that each mosquito bite has equal chance of transmitting 
the virus to susceptible in the population (or acquiring infection from an in-
fected human); 

2) considering saturated incidence rate (Non-linear incidence) which incor-
porate the production of antibodies in response to parasites causing Dengue in 
both human and vector population ( ),h vυ υ  respectively.  

3) the model consider the vector-aquatic class so as to investigate on the effect 
of the control strategies such as Larvicides at the aquatic stage;  

4) that the infectious mosquitoes remain infectious until death; 
5) there is loss of immunity for the recovered human population; 
6) incorporating the controlling rate parameters which will monitor the effects 

of control strategies at the aquatic stage ( vA ) and adult stages ( , ,v v vS E I ). 
In summary, following the assumptions above the transmission dynamics of 

dengue in a population is given by the following ten compartmental system of 
non-linear differential equation below: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

1 2

1

1

1

1

hv h v
h h h h h

h v

hv h v
h h h h h

h v

h h h h h h h h

h mh h h

h h h h h

h h h h h

b S t I t
S t S t R t

I t

b S t I t
E t M t E t

I t

I t E t M t I t

M t M t

T t I t T t

R t T t R t R t

β
π µ ω

υ

β
µ µ σ

υ

σ µ µ τ δ

π µ µ µ

τ µ γ

γ µ ω


= − − + + 


= + − +

+ 
= + − + + 
= − + +

= − +


= − − 












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( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

v v m v a v

vh v h
v m v v m v

v h
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I t
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π γ µ
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γ µ

υ

β
θ σ µ

υ

θ σ δ µ

= − + +
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= − − + + 

= − + + + +

= + − + + 









 

(3) 

where a dot is representing differentiation with respect to time.  
Figure 1 shows the schematic illustration of the dengue model. 

 

 
Figure 1. The Schematic illustration of dengue model. 
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Table 1 shows the description of the parameters of the model.  

2.1. Basic Properties of the Model 

It is important to explore the basic dynamical feature of the model. For the 
model (3) formulated above to be epidemiologically meaningful, it is very im-
portant to prove that all the states variables non-negative for all time (t). In other 
words, the solution of the model (3) with positive initial values of data will re-
main positive at all time 0t ≥ . 

Positivity and Boundedness of Solutions 
Since model (3) describe interaction between human and vector population, it is 
important to state that all the parameters and variables involved are non-negative 
with respect to time. The dengue model (3) will be consider in the biological-
ly-feasible region 6 4

h v + +ℑ = ℑ ×ℑ ⊂ℜ ×ℜ  with 

6, , , , , : h
h h h h h h h h

h

S E I M T R N π
µ+

 
ℑ = ∈ℜ ≤ 

 
             (4) 

and 
 

Table 1. Description of the parameters of dengue model (3). 

Parameters Description 

,h vπ π  Recruitment rate of humans and vector respectively 

mhπ  Recruitment rate of migrated population 

hvβ  Transmission rate from host to vector 

vhβ  Transmission rate from vector to host 

b  Biting rate of vector 

hυ  Proportion of antibody produced by human in the response to the incidence of 
infection caused by the vector 

vυ  Proportion of antibody produced by vector in the response to the incidence of 
infection caused by the human 

,h vµ µ  Natural death rate of humans and vector respectively 

1 2,µ µ  Transition rates between exposed humans and infectious humans 

hσ  Progression rate of exposed humans to infectious class 

vσ  Progression rate of exposed vector to infectious class 

hτ  Treatment rate of the infectious individuals 

ω  Per captia rate of loss of immunity in humans 

1γ  Recovery rate due to treatment 

mγ  Mean aquatic transition rate 

,h vδ δ  Disease—induced death rate of humans and vectors respectively 

,a mC C  Control effect rate 

cθ  Extrinsic incubation rate of vectors 

https://doi.org/10.4236/oalib.1104413


M. M. Ojo, et al. 
 

 

DOI: 10.4236/oalib.1104413 6 Open Access Library Journal 
 

4, , , : v
v v v v v v

v

A S E I N π
µ+

 
ℑ = ∈ℜ ≤ 

                
  (5) 

It can be shown that the set ℑ  is a positively invariant set and global attrac-
tor of this system. This implies, any phase trajectory initiated anywhere in the 
non-negative region 10

+ℜ  of the phase space eventually enters the feasible re-
gion ℑ  and remains in ℑ  thereafter. 

Lemma 2.1 The region  

10, , , , , , , , , : ,h h
h h h h h h v v v v h h

h h

S E I M T R A S E I N Nπ π
µ µ+

 
ℑ = ∈ℜ ≤ ≤ 

 
 is positive-

ly-invariant for the model (3). 
Proof: The rate of change of the human total population is given by 

 d
d

h
h h h h h mh

N N I
t

π µ δ π= − − +
                

  (6) 

and, 

 ( )d
d

v
v v v a v m v v v v v

N N C A C S E I I
t

π µ δ= − − − + + −            (7) 

where h h h h h h hN S E I M T R= + + + + +  and v v v v vN A S E I= + + + . 

Since d
d

h
h h h mh

N N
t

π µ π≤ − +  and d
d

v
v v v

N N
t

π µ≤ −  for special case 

0h v a mC Cδ δ= = = = , it follows that whenever ( ) h mh
h

h

N t π π
µ
+

>  and 

( ) v
v

v

N t π
µ

> , then d
0

d
hN

t
<  and d

0
d

vN
t
<  respectively. 

Thus, since it follows from the right hand side of Equations ((6) and (7)) that 
d
d

hN
t

 is bounded by h h mhπ µ π− +  and d
d

vN
t

 is bounded by v vπ µ− , the 

standard comparison theorem [17] [18] can be used to show that: 

( ) ( )0 exp 1 exph ht th mh
h h

h

N t N µ µπ π
µ

− −+  ≤ + −   if ( )0 h mh
h

h

N π π
µ
+

≤
   

(8) 

and  

( ) ( )0 exp 1 expv vt tv
v v

v

N t N µ µπ
µ

− − ≤ + −   if ( )0 v
v

v

N π
µ

≤
        

(9) 

Thus, ℑ  is positively invariant under the flow described by (3) so that no 
solution path leaves through any boundary of ℑ . Hence, in the region ℑ , the 
model (3) is recognized to be mathematically and epidemiologically well-posed. 
Thus, it is sufficient to consider the dynamics of the model in the domain ℑ . 

2.2. Asymptotic Stability of the Disease Free Equilibrium 

The dengue disease-free equilibrium is a point at which the population is free 
from dengue fever. The disease-free equilibrium of the model (3) exists and is 
given by 
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{ }

( ) ( )( )

* * * * * * * * * *
0 , , , , , , , , ,

   ,0,0,0,0,0, , ,0,0

h h h h h h v v v v

h v m v

h m v a m v a v m

S E I M T R A S E I

C C C

ε

π π γ π
µ γ µ γ µ µ

=

  =  
+ + + + +  

   (10) 

2.3. Basic Reproduction Number 

A very important concern about an infectious disease is its ability to invade a 
population [15] [17]. The threshold condition known as the basic reproduction 
number (usually written as 0R ) is used in determining whether the disease will 
persist in the population or dies out as time increases; if 0 1R < , then the disease 
free equilibrium (DFE) will be locally asymptotically stable and the disease can-
not invade the population while when 0 1R > , then the DFE is unstable and in-
vasion is possible which could leads to an endemic equilibrium state [13] [19]. 

The linear stability of 0ε  is studied using the next generation operator tech-
nique [20] [21] [22] on the system (3). Using the notations in [20] [22], it follows 
that the matrices F and V, for the new infection terms (transmission) and the 
remaining transfer terms (transition) are respectively given by: 

*

*

0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

h hv

v vh

bS

F

bS

β

β

 
 
 
 

=  
 
 
  
 

 

and 
*

1 1

2 2

3

4

8

9 10

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0

h hv

h

h

bS

V

κ µ β
σ κ µ

κ
τ κ

κ
κ κ

 −
 
− − 
 

=  
− 

 
  −             

 (11) 

where 
( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 1 2 4 1

8 9 10

,  ,  ,  ,

,   and .
h h h h h h h

c v v m c v v v mC C

κ µ σ κ µ τ δ κ µ µ µ κ µ γ

κ θ σ µ κ θ σ κ δ µ

= + = + + = + + = +

= + + + = + = + +
 

It follows that the basic reproduction number of the model (3) denoted by 0R , 
is given by ( )1

0R FVρ −=
 

where ρ  is the spectral radius (maximum eigen-
values) [17]. Hence, 

2 * *
9

0
1 2 8 10

h hv v vh hb S SR β β σ κ
κ κ κ κ

=

 
So that; 

( )
( )( )( )( )

2 * *

0
h hv v vh h v c

h h h h h c v v m v v m

b S S
R

C C
β β σ σ θ

µ σ µ τ δ θ σ µ δ µ
+

=
+ + + + + + + +
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Hence 

0 h vR R R=                          (12) 

where  

 
( )( )

*
h hv h

h
h h h h h

bSR β σ
µ σ µ τ δ

=
+ + +                  

 (13) 

and, 

( )
( )( )

*
v vh v c

v
c v v m v v m

bS
R

C C
β σ θ

θ σ µ δ µ
+

=
+ + + + +               

(14) 

In (13), 
( )( )

*
h hv h

h
h h h h h

bSR β σ
µ σ µ τ δ

=
+ + +

 describes the number of humans that 

just one infectious vector infects over its expected infection period in a com-

pletely susceptible humans population. Also, 
( )

h

h h

σ
µ σ+

 is the probability that a 

human will survive the exposed state to become infectious, while 
( )

1

h h hµ τ δ+ +
 

is the average duration of the infectious period of human. 

In (14), 
( )

( )( )

*
v vh v c

v
c v v m v v m

bS
R

C C
β σ θ

θ σ µ δ µ
+

=
+ + + + +

 signifies the number of vec-

tors infected by one infectious human during the period of infectiousness in a 

completely susceptible vector population. Also, ( )
( )

v c

c v v mC
σ θ

θ σ µ
+

+ + +
 is the 

probability that a vector will survive the exposed state to become infectious while 

( )
1

v v mCδ µ+ +
 is the average duration of the infectious period of vector. 

2.4. Stability of the Disease-Free Equilibrium Point 

We will use the basic reproduction obtained for the model (3) to analyze the 
stability of the equilibrium point in the following result. 

Theorem 2.1. The disease-free state 0ε  of the dengue model considered, is 
locally asymptotically stable if 0 1R <  and unstable if 0 1R > . 

Proof: The Jacobian matrix of the system (3) evaluated at the disease-free 
equilibrium point 0ε , is obtained as 

( )

11 16 1,10

22 24 2,10

32 33 34

44

53 55
0

65 66

77

83 87 88

93 99

10,9 10,10

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

J J J
J J J
J J J

J
J JJ

J J
J

J J J
J J

J J

ε

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

  

 (15) 
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where 

*
11 22 1 32 33 2 53 2,10

* *
24 1 34 2 44 3 83 93

55 4 64 1 17 66 5 77 6 87

88 7 99 8 10,9 9 10,10 10 1

,  ,  ,  ,  ,  ,

,  ,  ,  ,  ,
,  ,  ,  ,  ,  ,

,  ,  ,  ,  

h h h hv h

vh v vh v

m

J J J J J J b S

J J J J b S J b S
J J J J J J

J J J J J

µ κ σ κ τ β

µ µ κ β β
κ γ ω κ κ γ

κ κ κ κ

= − = − = = − = =

= = = − = − =

= − = = = − = − =

= − = − = = − *
,10 hv hb Sβ= −

 

From (15), it is sufficient for us to show that all the eigenvalues of ( )0J ε  are 
negative. The first and eight columns contains only the diagonal terms which 
form the two negative eigenvalues, hµ−  and ( )h mCµ− + , so that the other 
eight eigenvalues can be obtained from the sub-matrix ( )1 0J ε , formed by ex-
cluding the first and eight rows and columns of ( )0J ε . Hence, ( )1 0J ε  is writ-
ten as 

( )

22 24 2,10

32 33 34

44

53 55
1 0

65 66

77

93 99

10,9 10,10

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

J J J
J J J

J
J J

J
J J

J
J J

J J

ε

 
 
 
 
 
 =  
 
 
 
 
 
         

(16) 

In the same way, the fifth and sixth column of ( )1 0J ε  contains only the di-
agonal term which forms a negative eigenvalues ( )hµ ω− +  and  
( )m v aCγ µ− + + . The remaining six eigenvalues can be obtained from the 

sub-matrix ( )2 0J ε  written as 

( )

22 44 2,10

32 33 34

44
2 0

53 55

93 99

10,9 10,10

0 0 0
0 0 0

0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

J J J
J J J

JJ
J J
J J

J J

ε

 
 
 
 =  
 
 
 
 

           

(17) 

Using the same approach, the fourth column and third column of ( )2 0J ε  
contains only the diagonal term which forms a negative eigenvalue, ( )1hµ γ− +  
and ( )1 2 hµ µ µ− + + . The remaining four eigenvalues can now be obtained by 
the characteristics equation of the sub-matrix ( )2 0J ε  written as 

( )

( )
( )

( )
( ) ( )

*

3 0 *

0 0
0 0

0 0
0 0

h h hv h

h h h h

vh v c v v m

c v v v m

b S

J
b S C

C

µ σ β
σ µ τ δ

ε
β θ σ µ

θ σ µ δ

 − +
 − + + =
 − + + +
 + − + + 

(18) 

Hence, the eigenvalues of the matrix ( )3 0J ε  are the roots of the characteris-
tics equation; 

( )( )( )( )
( )2 * * 0

h h h h h c v v m v v m

v hv h vh v c v

C C

b S S

λ µ σ λ µ τ δ λ θ σ µ λ µ δ

σ β β θ σ

+ + + + + + + + + + + +

− + =
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Let ( )1 h hκ µ σ= + , ( )2 h h hκ µ τ δ= + + , ( )8 c v v mCκ θ σ µ= + + + ,  
( )10 v v mCκ µ δ= + +  and ( )9 c vκ θ σ= +  then the equation above becomes: 

4 3 2
4 3 2 1 0 0B B B B Bλ λ λ λ+ + + + =                 (19) 

where 

( )( )
( )( ) ( )( )

4

3 1 2 8 10

2 1 2 8 10 1 2 8 10

1 1 2 8 10 8 10 1 2

2 * *
0 1 2 8 10 9

1

 

v hv h vh v

B
B
B

B

B b S S

κ κ κ κ

κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ κ

κ κ κ κ σ β β κ

=


= + + + 
= + + + + 
= + + + 
= −               

(20) 

Further perturbation on 0B  in terms of reproduction number, 0R  yields 

( )2
0 1 2 8 10 01B Rκ κ κ κ= −                     (21) 

We employ the Routh-Hurwitz criterion, [23] [24] [25], which states that all 
roots of the polynomial (19) have negative real parts if and only if the coeffi-
cients of iB  are positive and matrices 0iH > , for 0,1,2,3,4i =  from (20), it is 
obvious that 1 0B > , 2 0B > , 3 0B > , 4 0B > , since all iB ’s are positive. 
Moreover, if 0 0R < , it then follows from (21) that 0 0B > . Also, the Hurwitz 
matrices for the polynomial (19) are found to be positive. That is, 1 3 0H B= > ,  

3 4
2

1 2

0
B B

H
B B

= > ,  
3 4 0

3 1 2 3

0 1

0
0

B B B
H B B B

B B
= >  a n d  

3 4

1 2 3 4
4

0 1 2

0

0 0

0
0
0 0 0

B B
B B B B

H
B B B

B

= > .  

Hence, all the eigenvalues of the Jacobian matrix ( )0J ε  have negative real 
parts whenever 0 1R < , and the disease-free equilibrium point is said to be lo-
cally asymptotically stable. However, if 0 1R >  we deduce that 0 0B <  and by 
Descartes’ rule of signs [23] [25], there exist exactly one sign change in the se-
quence 4 3 2 1 0, , , ,B B B B B  of coefficients of the polynomial (19). So, there is one 
eigenvalue with non-negative real part and hence the disease-free equilibrium 
point is said to be Unstable which proclaims an existence of an endemic state of 
equilibria. 

3. Sensitivity Analysis 

The necessity of conducting an investigation which tells how sensitive the thre-
shold quantity basic reproduction number is with respect to its parameters can-
not be over-emphasized. This will help us to know the parameters having the 
most significant impact on the outcome of the numerical simulations of the 
model. Sensitivity analysis informs us the importance of each parameter to the 
disease transmission, and this will help the public health authorities to place 
priority on a well posed intervention strategy for preventing and controlling the 
spread of the disease in the population.  

Following [19] [26] the normalized forward sensitivity index also called elas-
ticity was employed. The normalized forward sensitivity index of the reproduc-
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tion number 0R  with respect to the parameter k is given by: 

0 0

0

R
k

R kZ
k R

∂
= ×
∂                       

 (22) 

Using the elasticity formula presented in (22) and the baseline parameters in 
Table 2 below to obtain the numerical values for the elasticity’s. The elasticity 
index was estimated with respect to each parameter, and the results are displayed 
in Table 3. 

 
Table 2. Parameter values for the dengue model (3). 

Parameters Baseline Value References 

,h vπ π  20 day−1, 5000 day−1 [12] 

mhπ  Variable Assumed 

hvβ  0.75 day−1 [6] 

vhβ  0.375 day−1 [6] 

b  0.12 [6] 

hυ  Variable Assumed 

vυ  Variable Assumed 

,h vµ µ  67 years, (4, 14) days [6] 

1 2,µ µ  Variable Assumed 

hσ  (0, 1) day−1 [23] 

vσ  (0, 1) Assumed [6] 

hτ  Variable Assumed 

ω  1
730

 [23] 

1γ  0.1428 day−1 [23] 

mγ  Variable [6] 

,h vδ δ  10−3 day−1, 0.01 [6] [23] 

,a mC C  Variable Assumed 

cθ  (2 - 6) days [7] 

 
Table 3. Sensitivity indexes of the dengue model’s parameters with respect to R0. 

Parameters Sensitivity Index Parameter Sensitivity Index 

hπ  0.89 hµ  −0.45 

hvβ  0.99 vµ  −0.93 

vhβ  0.99 hτ  −0.76 

b  1 hδ  −0.04 

vπ  0.99 vδ  −0.12 

hσ  0.0004 aC  −0.44 

vσ  0.51 mC  −0.31 

mγ  0.24 
  

cθ  0.27 
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Table 2 shows the baseline value of parameters used for the numerical simu-
lation. 

Table 3 present the sensitivity index of the dengue model with respect to 0R . 
The result of the Sensitivity Index presented above in Table 3 shows that the 

vector biting rate has the highest positive sensitivity index with value (1), which 
indicates that increase (decrease) by ?% in the biting rate b will be followed by an 
immediate increase (decrease) in reproduction number ( 0R ) by ?%. Similarly, 
increase in the transmission rate from host to vector, transmission rate from 
vector to human and recruitment rate of humans and vector ( ), , ,hv vh h vβ β π π  
respectively will increase the reproduction number. The immediate conclusion is 
that, at the disease free equilibrium the most effective control strategy is the 
vector control (Aquatic and Adult stage). 

The vector death rate has the highest negative sensitivity index with the value 
(−0.93) which indicates that any increase by ?% in vµ  will decrease the repro-
duction number ( 0R ) by ?% and vice-versa. This Furtherly buttress our claim 
that vector control is the most control strategy to maintain a disease free envi-
ronment. Also, the sensitivity index of the treatment rate of dengue infectious 
individuals ( hτ ) is −0.76, this calls for an increase in treatment rate in other to 
reduce the reproduction number.  

In summary, the dengue sensitivity analysis identifies the most important pa-
rameters driving the transmission mechanism of the disease. The results suggest 
that a control strategy that reduces the vector biting rate, transmission rate from 
host to vector, transmission rate from vector to human, recruitment rate of hu-
mans and vector ( ), , , ,hv vh h vb β β π π  respectively and control strategy that in-
creases the treatment rate and the death rate of the vector, will effectively curtail 
the spread of Dengue Virus in the population. 

4. Numerical Simulations and Discussion 

In this section, we study numerically the behaviour of the Dengue model (3), 
using the Rungi-Kutta method with the values presented in Table 2 (unless oth-
erwise stated). The numerical simulations are conducted using computational 
machine (Maple 18), and the results are presented below. 

The behaviour of Susceptible human as the antibody hν  increases in propor-
tion over a period of time is presented in Figure 2(a) above. It was observed that, 
the Susceptible human population drastically dropped due to the infection by 
infectious vectors and increase in the proportion of the human antibodies re-
duces the decrease in the susceptible population. Also, Figure 2(b) & Figure 2(c) 
presents the order of magnitude of the exposed human populations and infec-
tious human populations. It was observed that the exposed human populations 
and infectious human populations decrease as the proportion of human antibo-
dy increases. 

The behaviour of Susceptible human as the biting rate b decreases over a pe-
riod of time was presented in Figure 3(a). It was observed that, the Susceptible  
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(a)                                                    (b) 

 
(c) 

Figure 2. Simulations of Dengue model (3) showing the varying effect of the proportion of antibody hν  on the human popula-

tion ( ), ,h h hS E I , as a function of time when 0 1R < . Parameter values used are presented in Table 2 with 0a mC C= = .  

 

    
(a)                                                    (b) 

Figure 3. Simulations of Dengue model (3) showing the effect of vector biting rate (b) on the human population ( ),h hS I , as a 

function of time when 0 1R < . Parameter values used are presented in Table 2 with 0a mC C= = .  
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human population increases due to the decrease in the vector biting rate. Simi-
larly Figure 3(b) presents the effect of vector biting on the infectious human 
population. As the vector biting rate decreases, the infectious human popula-
tions’ also decreases. Thus, minimizing the vector biting rate will reduce the in-
fection rate of the diseases in the population. 

The behaviour of the vector population as the Aquatic stage control aC  in-
creases over a period of time was presented in Figure 4(a). It was observed that, 
the vector population in the Aquatic stage dropped due to increase in the Aqua-
tic stage control. Similarly in Figures 4(b)-(d), it was observed that the order of 
magnitude of the susceptible vector populations, exposed vector populations and 
infectious vector populations decrease as the Aquatic stage control increases. 
Thus, early control of the vectors in their Aquatic stage will reduce the popula-
tion of the vector to its barest minimum, and this will reduce the probability of  

 

 
(a)                                                     (b) 

  
(c)                                                     (d) 

Figure 4. Simulations of Dengue model (3) showing the effect of Aquatic stage control measure aC  on the vec-

tor population ( ), , ,v v v hA S E I , as a function of time when 0 1R < . Parameter values used are presented in Table 

2 with 0aC ≠  and 0mC = .  
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humans getting infected by vector infections due to their biting rate. 
The behaviour of the vector population ( ),v vE I  as the Adult stage control 

mC  increases over a period of time was presented above in Figure 5(a). It was 
observed that, the exposed vector population reduces due to increase in the 
Adult stage control. Similarly Figure 5(b) shows that the order of magnitude of 
the infectious vector populations’ decrease as the Adult stage control increases. 
Thus, increasing the control of vectors in their Adult stage will reduce the popu-
lation of the vector to its barest minimum. 

The behaviour of the infectious human population ( hI ) was presented in Fig-
ure 6. The vector biting rate decreases with increase in the proportion of  

 

    
(a)                                                    (b) 

Figure 5. Simulations of Dengue model (3) showing the effect of Adult stage control measure mC  on the vector 

population ( ), ,v v hS E I , as a function of time when 0 1R < . Parameter values used are presented in Table 2 with 

0aC =  and 0mC ≠ .  
 

 
Figure 6. Simulation of Dengue model (3) showing the behaviour of the infected human 
population ( hI ) with precautionary measures. Parameter values used are presented in 
Table 2 with 0.12, 0.00hb ν= =  and 0.0012, 1.00hb ν= = .  
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human antibody over a period of time. It was also observed that, drastic decrease 
in the vector biting rate and increase in the proportion of human antibody will 
reduce the population of the infectious human as time increases. Thus, reducing 
the vector biting rate and increasing the proportion of human antibody are 
enough to reduce the infection of the disease in the population to its barest 
minimum. 

5. Conclusion 

A new system of ordinary differential equations which incorporates saturated 
incidence function, vector biting rate and control measures at the aquatic and 
adult stages of the vector (mosquito) was presented and analysed. The dis-
ease-free equilibrium represented by ( 0ε ) was shown to be locally asymptotically 
stable whenever the reproduction number ( 0R ) is less than unity. The sensitivity 
analysis shows that the dominant parameters are the vector biting rate, trans-
mission rate from host to vector, transmission rate from vector to human, re-
cruitment rate of humans and vector, treatment rate and the death rate of the 
vector ( ), , , , , ,hv vh h v h vb β β π π τ µ  respectively. Furtherly, the numerical simula-
tion shows that increasing the proportion of human antibody and putting into 
place a control strategy that minimize the vector biting rate are enough to reduce 
the infection of the disease in the population to its barest minimum. 
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