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ABSTRACT 
 

This study investigates the effects of viscous dissipation on an unsteady two-dimensional 
magnetohydrodynamics (MHD) natural convection through an inclined plate. The governing partial 
differential equations together with the boundary conditions are transformed into a dimensionless 
coupled partial differential equations. An implicit-finite difference method is use to solve the 
dimensionless equations. The effects of various fluid parameters on velocity, temperature, 
concentration distribution are separately presented in graphical forms and discussed. It was 
observed that the an increase in the thermal Grashof number or modify Grashof number is 
manifested as an increase in flow velocity also magnetic field and viscous dissipation is seen to 
exert a more significant effect on the flow field and thus on the heat transfer from the plate to the 
fluid. 
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1. INTRODUCTION 
 
Dissipation of energy is significant when 
considering the unsteady MHD natural 
convective flow through an inclined plate. 
Viscous dissipation effect is reflected by the 
Eckert number which is a source of the 
temperature rise that takes place in the flow of 
the fluid. Magnetohydrodynamics has an 
important application in several engineering 
problems such as MHD power generators in the 
boundary layer control aerodynamics, nuclear 
reactors cooling and also in the petroleum 
industries. 
 
In view of its application, Mukhopadhyay et al. [1] 
studied MHD boundary layer flow over a heated 
stretching sheet with variable viscosity. 
Gnaneswara [2] carried out Lie group analysis of 
heat and mass transfer effects on steady MHD 
free convection dissipative fluid flow past an 
inclined porous surface with heat generation. 
Gnaneswara and Bhaskar [3] investigated mass 
and heat generation effects on MHD free 
convection flow past inclined vertical surface in a 
porous medium while Saidul [4] carried out 
analysis on the MHD free convection and mass 
transfer flow past through an inclined plate with 
heat generation. The boundary layer equation in 
two-dimensional energy and mass transfer 
equations were obtained by boundary layer 
approximation. It was shown that the effects of 
Magnetic parameter and Heat source parameter 
enhanced the velocity field. Kalpadides and 
Balassas [5] studied the free convective 
boundary layer problem of an electrically 
conducting fluid over an elastic surface by group 
theoretic method. It was found from the 
numerical solution that the effect of increasing 
thermal Grashof number is manifested by an 
increase in flow velocity. In the presence of a 
magnetic field parameter, the permeability of 
porous medium, viscous dissipation is 
demonstrated to exert a more significant effect 
on the flow field and thus, on the heat transfer 
from the plate to the fluid. The velocity and 
concentration is found to decrease gradually as 
the Schmidtl number is increased. 
 
The study of flow through porous medium and 
dissipation effect has received attention of many 
researchers because of it extensive applications 
in enhancing recovery of petroleum, chemical 
engineering etc. Sandeep and Sugunamma [6] 
analysed the effect of inclined magnetic field on 
unsteady free convective flow of dissipative flow 
past a vertical plate. Dada and Adefolaju [7] 

investigated dissipation, MHD and radiation 
effects on an unsteady convective heat and 
mass transfer in a Darcy-Forcheimer porous 
medium. It was noted that temperature and 
concentration slightly increase with increase in 
magnetic field parameter while the presence of 
magnetic field has a retarding effect on the 
velocity profile. A rise in the conduction-radiation 
parameter causes reduction in the velocity profile 
while a rise in the dissipation function induces a 
considerable rise in velocity. Increase in the 
Prandtl number, Schmidtl number, thermal 
Grashof number, solutant Grashof number and 
the conduction radiation parameter causes the 
temperature to reduce while a rise in the Darcy 
number causes a rise in temperature along and 
normal to the wall. Hunegnaw and Kishan [8] 
carried out analysis on unsteady MHD heat and 
mass transfer flow over stretching sheet in 
porous medium with variable properties 
considering viscous dissipation and chemical 
reaction while Megahed et al. [9] Studied a 
similarity analysis in magnetohydrodynamics hall 
effects on free convection flow and mass transfer 
past a semi-infinite vertical flat plate. Ibrahim [10] 
investigated the similarity reductions for 
problems of radiative and magnetic field effects 
on free convection and mass-transfer flow past a 
semi-finite flat plate. They obtained new similarity 
reductions and found an analytic solution for the 
uniform magnetic field by using Lie group 
method. Chen [11] carried out an analysis to 
study the natural convection flow over a 
permeable inclined surface with variable wall 
temperature and concentration. The result show 
that the velocity is decreased in the presence of 
a magnetic field. Increasing the angle of 
inclination decreases the effect of buoyancy 
force. Heat transfer rate is increased when the 
Prandtl number is increased. Reddy and Reddy 
[12] performed an analysis to study the natural 
convection flow over a permeable inclined 
surface with variable temperature, momentum 
and concentration. 
 

Follow from the above studied, the present study 
investigate the effects of viscous dissipation on 
MHD free convection and mass transfer flow with 
heat generation through an inclined plate.  
 

2. PROBLEM FORMULATION 
 

Considering an unsteady two-dimensional MHD 
natural convection and dissipating fluid past an 
inclined plate in a Cartesian coordinate system 
where the X-axis is chosen along the plate in the 
direction of the flow and the Y-axis is normal to it. 
It has been considered initially that the plate as 
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well as the fluid is at the same temperature T  

and the concentration levels C  everywhere in 

the fluid. Also, it is considered that the fluid and 
the plate is at rest after the plate is to be moving 

with a constant velocity 0U  in its own plane and 

instantaneously at time 0>t , the concentration 
and the temperature of the plate are raised to 

CCw >  and TTw >  respectively, where wC , 

wT  are concentration and temperature at the wall 

of the plate respectively and C , T  are the 

concentration and temperature far away from the 
plate respectively.The physical model of the 
problem is shown in the Fig. 1 below.  

 

 
 

Fig. 1. The physical model and coordinate system 
 
With reference to the generalized governing equations described above, the transient two dimensional 
problems are governed by the following system of coupled non-linear differential equations.  
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The corresponding initial and boundary conditions are: 
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where x , y  are Cartesian coordinate system, u , v  are x , y  component of flow velocity 

respectively. Here g is the local acceleration due to gravity;   is the dynamic viscosity;   is the 

density of the fluid; K  is the thermal conductivity, pC  is the specific heat at the constant pressure; D  

is the coefficient of mass diffusivity;   and 
*  are the thermal and concentration expansion 

coefficients respectively;   is the angle of inclination; T  is the temperature of the fluid;   is the 

electrical conductivity of the fluid; T  is the temperature of the fluid far away from the plate; C is the 

fluid concentration; C  is the concentration in the fluid far away from the surface; 0B  is the magnetic 

induction and   is the kinematic viscosity. 
 
Introducing the following dimensionless variables;  
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where X and Y are dimensionless coordinates, U and V are dimensionless velocities,   is the 

dimensionless time, T  is the dimensionless temperature function, C  is the dimensionless 
concentration function. Applying these dimensionless variables to equations (1) - (4) reduces to the 
non dimensional equations: 
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Also the associated initial and boundary conditions becomes  
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3. NUMERICAL SOLUTION OF THE PROBLEM  
 

Solving the unsteady non-linear coupled partial differential equations (8) - (11) subject to the 
conditions given by (12) and (13) and employ an implicit finite difference of the Crank-Nicolson type. 
The numerical algorithm presented in this article is conjectured to work for any value of the time step! 
The discretization of the governing equations is based on a linear Cartesian mesh and uniform grids 
on which finite-differences are taken; these are first-order accurate in time but second order in space, 
which improves the accuracy in time to second order. The coupled non-linear partial differential are 

converted to a difference equation. We define the coordinate ),,( YX  of the mesh points of the 
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The region of consideration here is a rectangle 

with sides )(maxX and .)(maxY  Where )(maxX  

corresponds to =Y  which lies outside the 
momentum, thermal and concentration boundary 
layers. The subscripts i  and j  denotes the grid 

points with X and Y coordinates respectively and 
k along the t-direction. Dividing X and Y into M 
and N grid spacing respectively, the mesh sizes 

are taken as 0.05=X  and 0.05=Y  and 

0.001=t . During any one-time step, the 

coefficients 
k
ji

k
ji andVU ,,  appearing in the 

difference equations are treated as constants. 
The values of C, T, U and V are known at all grid 

point at 0=t  from the boundary/initial 
conditions. The values of C, T, U and V at time 

level 1)( k  are evaluated using the already 

known values at previous time level (k).  
 

Hence, the finite difference equation forms a 
tridiagonal system of equations at every internal 

nodal point on a particular leveli   which is 
solved by using Matlab programming package 
that employ Thomas Algorithm as discussed 
Carnahan et al. [13]. Thus we calculate the 
values of C and T at every nodal point for a 

particular i  at 1)( k th time level and the 

results obtained were used in U at 1)( k th time 

level. The values of V are also determined at 
every nodal point explicitly on a particular 

leveli   at 1)( k th time level. In this way, the 

values of C, T, U and V are obtained at all grid 

point at time level 1)( k th in the region. The 

process is repeated several times for various 

leveli   until the steady state is reached which 
is assumed to have been reached when the 
absolute difference between the values of U, T 
and C at two consecutive time steps are less 

than 
510
 at all grid points.  

 

4. DISCUSSION OF RESULTS  
 

Numerical computations has been carried out 
using the method of implicit finite difference of 

the Crank-Nicolson type for variations in the 
fluid’s parameters, namely the thermal Grashof 
number Gr, solutal Grashof number Gm, 
magnetic field parameter M, heat source 
parameter   angle of inclination  , prandtl 

number Pr, eckert number Ec and schmidtl 
number Sc. The solutions for the velocity U 

versus Y, temperature T  versus Y, 

concentration C  versus Y are shown in the 
graphs for different values of parameter. 
 
Fig. 2 shows the effect of angle of inclination to 
the vertical direction on the velocity profile for 

various angles of inclination   ,60,45,300=  

with fixed values 

20=20,=0.5,=0.6,=0.71,= mrcr GGMSP , 

0.2,= . From this figure, it is observed that the 

velocity is decreased by increasing the angle of 
inclination. The fact is that as the angle of 
inclination increases the effect of buoyancy force 
due to thermal diffusion decreases by a factor of 

cos . 
 
Fig. 3 represents the velocity distributions for 
different values of magnetic parameter 

 4.52.5,0.5,=M  the values of 

.20=20,=0.6,=0.71,= mrcr GGSP 0.2,=  

are constants and with an inclination angle 
0 . In 

this figure, it is observed that velocity distribution 
decreases with an increase in magnetic 
parameter. Since magntic field exact a retarding 
force on fluid flow. 
 
Fig. 4 depicts the velocity distribution for different 
values of Thermal Grashof number 
 20,30,40=rG  and the values of 

0.2,=20,=0.5,=0.6,=0.71,= mcr GMSP  

are fixed and with an inclination angle 
0 . The 

positive values of rG  is correspond to the 

cooling of the plate. It is observed that velocity 
distribution increases with the increase of 
Grashof numbers. 
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Fig. 2. Velocity profile for different values of α 
 

 
 

Fig. 3. Velocity profile for different values of M 
 

 
 

Fig. 4. Velocity profile for different values of Gr 
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Fig. 5 shows the velocity distribution for different 

values of Prandtl number  .00.71,1.0,7=rP  

and the values of 0.5=M , 

0.2=0.6,=20,=20,= cmr SGG  are 

maintained with an inclination of 
0 . The Prandtl 

number defines the ratio of momentum diffusivity 
to thermal diffusivity. The numerical results show 
that the effect of increasing values of Prandtl 
number results in a decreasing velocity. 
 
Fig. 6 represents the velocity distribution for 
different values of Modify Grashof number 

 20,30,40=mG  and the values of 

0.71=0.60,=0.2,=0.5,=20,= rcr PSMG   

are constants with an inclined angle 
0 . The 

solutant Grashof number mG  defines the ratio of 

the species buoyancy force to the viscous 
hydrodynamic force. The velocity distribution 
increases with an increase in the solutant 
Grashof number. 
 
Fig. 7 shows the effect of viscous dissipation 
parameter on the velocity distribution for different 
values of Eckert number Ec = 0.001, 1.0, 1.5, 2.5 
and the values of 

0.71=0.60,=0.2,=0.5,=20,=20,= rcmr PSMGG 

 are kept unchanged with an inclined angle 
00 . 

The Eckert number Ec expresses the relationship 
between the kinetic energy in the flow and 
enthalpy. It embodies the conversion of kinetic 
energy into internal energy by the workdone 
against the viscous fluid stresses. The positive 

 

 
 

Fig. 5. Velocity profile for different values of Pr 
 

 
 

 Fig. 6. Velocity profile for different values of Gm 
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Eckert number indicates cooling of the plate. i.e 
loss of heat to the fluid from the plate. It was 
observed that the velocity distribution increase 
with the increases of Eckert number. Hence, 
higher viscous dissipative heat causes a rise in 
the velocity distribution. 
 
Fig. 8 depicts the temperature distribution for 
different values of Heat Source parameter 

 5,3.50.5,1.5,2.=  and the values of 

0.71=0.60,=0.5,=20,=20,= rcmr PSMGG  

are constants with an inclined angle 
00 . In this 

figure, it is observed that temperature distribution 
increases with a rise in Heat source parameter. 

 
Fig. 9 represents the temperature distribution for 
different values of Prandtl number 

 .0,5.00.45,1.0,3=rP  and the values of 

0.60=0.2,=0.5,=20,=20,= cmr SMGG   

are constants with an inclined angle 
0 . The 

number defines the ratio of momentum diffusivity 
to thermal diffusivity. It is observe that for smaller 
values of Pr, the thermal conductivities 
increased. It implies that heat is able to diffuse 
away from the heated plate faster than for higher 
values of Pr. 
 

Fig. 10 represents the Velocity profile for different 
values of Schmidtl number. 

 .94,1.00.6,0.78,0=cS  and the values of 

0.71=0.2,=0.5,=20,=20,= rmr PMGG   are 

constants with an inclined angle 
0 .The Schmidtl 

number embodies the ratio of the momentum to 
the mass diffusivity. It is observed that increase 
in the Schmidtl number Sc decreases the 
velocity. 

 

 
 

Fig. 7. Velocity profile for different values of Ec 
 

 
 

Fig. 8. Velocity profile for different values of γ 
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Fig. 11 represents the Concentration profile for 
different values of Schmidtl number. 

 .94,1.00.6,0.78,0=cS  and the values of 

0.71=0.2,=0.5,=20,=20,= rmr PMGG   are 

constants with an inclined angle 
0 . It is 

observed that increase in the Schmidtl number 
decreases the Concentration. 

 

 
 

Fig. 9. Temperature distribution for different values of Pr 
 

 
 

Fig. 10. Velocity profile for different values of Sc 
 

 
 

Fig. 11. Concentration profile for different values of Sc 
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5. CONCLUSION  
 
This study deals with the unsteady MHD natural 
convection dissipative flow through an inclined 
plate. The equations governing the model were 
highlighted and non-dimensionalized. The effect 
of the angle of inclination through the plate on 
the fluid flow was observed. The mathematical 
equations to the problem were then solved using 
Crank-Nicolson method. Series of computation 
was carried out to study graphically the effects of 
the controlling thermo-physical parameters which 

are Magnetic field  M , dissipative function 

 cE , thermal Grashof number  rG , Modify 

Grashof number  mG , Prandtl number  rP , 

Schmidtl number  cS , Heat source parameter 

  , and the angle of inclination    on the 

dimensionless velocity, temperature and 
concentration profiles. 

 
It is also seen that the effect of increasing 
thermal Grashof number or Modify Grashof 
number is manifested as an increase in           
flow velocity. It is also interesting to note that the 
temperature decreases much faster than               
the air temperature. In the presence Magnetic 
field parameter, viscous dissipation is 
demonstrated to exert a more significant                
effect on the flow field and thus on the heat 
transfer from the plate to the fluid. The velocity 
and concentration is found to decrease gradually 
as the Schmidtl number is increased. The 
velocity and temperature distribution also 
increases with increases of the Heat source 
parameter. 
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