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Abstract 

 
The study considers heat and mass transfer of magnetohydrodynamics pressure-driven flow passed a 

stretching permeable surface in the presence of inclined uniform magnetic field. The equations governing 

the model are transformed by Lie’s group and solved using weighted residual method. The results 

obtained are compared with that of fourth order Runge-Kutta method that show the effects of Skin friction, 

Nusselt and Sherwood numbers on the flow. Finally, the influence of some important parameters on the 

flow are presented graphically and discussed.  
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1.  Introduction 
 

Magnetohydrodynamic (MHD) deals with the combined effects of electromagnetic forces and fluid 

mechanics. It is the study of fluid that is electrically conducting such as liquid metals, plasmas, and 

electrolytes or salt water. The fundamental concept of MHD is that the magnetic field stimulates currents 

in a flowing conductive fluid and causes the magnetic field to change. A pressure-driven flow of heat and 

mass transfer in hydromagnetic fluid flow passed a permeable surface has being studied widely due to its 

importance in MHD power generators, reducing drag, MHD pumps, petroleum reservoirs, chemical 

catalytic reactor, Aeronautical engineering fields, nuclear waste disposal and others.  
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Youssef et al. (2007) reported on two-dimensional viscous fluid flow passed gradually contracting and 

expanding surfaces by means of frail porosity using Lie-group method. The authors neglected the pressure 

gradient and magnetic terms in their analysis while Mohammad et al. (2014) examined the flow of viscous 

fluid through contracting or expanding gaps in porous surfaces using optimal homotopy asymptotic 

method. In the study, the magnetic field term was neglected but considered the effect of Reynolds number 

on the pressure distribution. An analytical analysis was carried out on an inclined magnetic poiseuille flow 

through a parallel permeable sheets with a constant pressure gradient by Manyonge et al. (2012). It was 

found that the flow momentum reduced in the existence of suction/injection rates, inclined magnetic field, 

Hartmann number and pressure gradient. Also, the study of a non-Newtonian boundary layer of a 

power-law flow fluid in a convergent conduit was investigated by Pramanik (2013). In the analysis, the 

pressure gradient and magnetic field term was ignored while the equations governing the problem were 

transformed to nonlinear differential equations using scaling group of transformations. The cited authors 

above did not reflect on the influences of heat transfer as well as and mass transfer on the flow fluid. 

 

The heat and mass transport under the effect of magnetic field has fascinated the attention of several 

intellectual scholars as a result of its applications in geophysics and astrophysics. Makinde (2010) gave 

analysis of heat exchange with the surrounding in a magnetodyrodynamic fluid flow with heat and mass 

transport over vertical boundary layer surface while Uwanta and Sarki (2012) studied heat and mass 

transfer by variable temperature along with exponential mass diffusion. The authors neglected the effect 

of pressure gradient in their study. Alireza (2013) reported on the magnetodyrodynamic stagnation point 

flow near a permeable stretching surface and chemical reaction. The problem was solved analytically 

using optimal homotopy asymptotic method and the results compared with fourth order Runge-Kutta 

method. Hossain and Samand (2013) investigated magnetodyrodynamic of heat and mass transfer flow 

with the existence of radiation, heat generation and chemical reaction through a stretching surface and 

magnetic field. The problem under consideration was transformed using similarity solution and solved 

numerically by applying shooting technique coupled with Runge-Kutta of fourth order scheme. Group 

transformation of dissipative hydromagnetic heat and mass transfer fluid flow over an inclined permeable 

plate was examined by Reddy (2013). The results show that the velocity increased as solutal and thermal 

Grashof numbers increased but decreased with a rise in Prandtl and Schmidt numbers. However, the 

pressure gradient, heat source and reaction rate terms did not reflect on the study. 

 

Pressure-driven flow of heat and mass transfer in a magnetohydrodynamic are important in several 

engineering processes and it is then given a considerable attention by many researchers in recent years. In 

the processes like heat transfer in a cooling wet tower, fluid droplets sprays, purification of crud oil, flow 

in a desert cooler and possible applications in many industries which include water industry, petroleum 

industry, drilling industry, sewage treatment industry and many more are few areas where pressure-driven 

flow is applicable. MHD couette flow of time dependent pressure gradient in a casson fluid under the 

influence heat transfer was analyzed by Sayed-Ahmed et al. (2011). The flow was influenced by uniform 

magnetic field which was applied upright to the surface with regular and exponential pressure gradient, 

the flow was subjected to unvarying injection and suction. Farooq et al. (2013) examined steady poiseuille 

flow and heat transfer of couple stress fluids within two parallel inclined surfaces with variable viscosity. 

Reynold’s model for temperature dependent viscosity was used. Thiagarajan and Sangeetha (2013) 

reported on nonlinear MHD flow with heat transfer through the boundary layer and pressure gradient in a 

vertical stretching surface in the existence of thermal conductivity and variable viscosity. 

 

The above studies referred, neglected the influence of inclined magnetic field as well as the effects of 
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some fluid parameters on the fluid pressure. The current study examines the influence of inclined 

magnetic field on the flow and the effect of some fluid parameters on pressure drop in a steady heat and 

mass transfer of MHD flow. 

 

2.  Formulation of the Problem  
 

Consider the convective heat and mass transfer of MHD pressure-driven flow of a steady, laminar, 

incompressible and viscous fluid flow through a permeable surface under the influence of uniform 

inclined magnetic field with pressure gradient. The motion of the fluid is maintained by both pressure 

gradient and gravity, and the flow is taken to be in the direction of x  with y -axis normal to it. A uniform 

strength of magnetic field 0B  is applied at angle   lying in the range 
2

<<0


  in the direction of the 

flow and 
l

BA
1

== . The geometry and equations governing the two-dimensional MHD pressure-driven 

fluid flow passed a permeable surface with inclined magnetic field are as follows:  
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The boundary and initial conditions are as follows.  
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Using the following dimensionless quantities  
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Substituting dimensionless quantities (7) as well as the stream function 
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into Equations (1) to (6), we obtain  
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subject to the initial and boundary conditions  
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where x  and y  are dimensionless coordinate, u  and v  are the dimensionless velocity,   and   are 
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the dimensionless temperature and concentration, p  is the pressure, 



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w =  is the non-dimensional wall mass 

transfer coefficient such that 0wf  indicates wall suction and 0wf  indicates wall injection or 

blowing respectively. 

 

Introducing Lie group of scaling transformations into Equations (8) - (12), (Mukhopadhyay et al. (2005) 

and Bhattacharyya et al. (2011)) as  
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where 1 , 2 , 3 , 4 , 5 , 6 , 7  and 8  are the parameters of transformation and   is a small 

parameters. Equation (13) is regarded as a point-transformation that transforms coordinate 

),,,,,,(  vuyx  to the coordinate ),,,,,,( *******  vuyx . 

 

Using the transformations Equation (13) in Equations (8) - (12), these resulted to in one parameter group 

of transformations given by  
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Therefore, the similarity solutions become  
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Substituting the similarity solution of Equation (16) into Equations (8) to (12), to get the system of 

coupled differential equations;  
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   0.='''  QPfPfP rrr 
                                                    (19) 
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The corresponding initial and boundary conditions transform to  
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Integrating Equation (18) with the initial and boundary conditions when 1=wf , let pressure drop 
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By applying WRM (McGrattan (1998) & Odejide and Aregbesola (2011)) to Equations (17) to (22), 

assuming a polynomial with unknown coefficients or parameters to be determined later, this polynomial is 

called the trial function which are defined as follow:  
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By imposing the boundary conditions (21) on the trial functions as well as substituting the trial functions 

into Equations (17), (19) and (20) to obtain the residual  
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The residual error are minimized to zero at some set of collocation points at a regular interval within the 

domain. That is,  
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where 11,2,...,= Nk  and 11=3,=0,= Nba . These are solved using MAPLE 18 to obtain the 

unknown coefficients. 

 

Substituting the constant values into the trial functions to obtain the tangential velocity, temperature and 

concentration equations as follows;  
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432 72 . 5301361513 . 0476327562 . 0992842401 . 00000000)(  f   

            8765 390.04548043210.19916583410.6293250271.47025965          )27(  

                .02790.000000014840.000028414390.00067064370.00708522 1211109    

  

   
32 520.607431813300.08820358050.7501015301.00000000)(    

           7654 000.14294284120.32959175790.57093033970.72611807          )28(  

           1098 34330.001757157770.010892920960.04630653    

           .14498590.00000790519760.00017357 1211    

 

    
32 690.11145176570.7550189771.4206048801.00000000)(    

           7654 000.17333744650.36377573090.55641726850.55211830          )29(  

           1098 38860.002639577240.015389624890.06091843    

           .3416200.00001305980280.00027460 1211    

  

Differentiate Equation (27) to obtain  

 

    
432 57 . 35129828310 . 120544639 . 1428982524 . 19856849)(  f  

           8765 330.06376701120.3638434751.3941608253.77595014            (30) 

           .3480.000001233240.000312563900.00670644 11109    

 

Substituting for f  and 'f  in Equation (22) with the constant values to obtain the pressure drop as, 

 

    
32 310 . 120544639 . 1428982524 . 19856849000.50000000)(  G   

         7654 160.3638434751.3941608253.7759501457.35129828    

         1098 318850.0003125639000.006706443320.06376701    

          211 62.0992842401.000000001/234320620.00000123                       (31) 

         543 71 . 4 7 0 2 5 9 6 572 . 5 3 0 1 3 6 1 513 . 0 4 7 6 3 2 7 5    

         876 3950.04548043210.19916583410.62932502    

         11109 4835320.00002841439000.0006706437020.00708522    

         212278600520.00000010  . 

 

Skin Friction  
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2
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42 9 . 4 0 5 1 9 3 183 0 . 3 6 1 6 3 3 811 8 . 2 8 5 7 9 6 524 . 1 9 8 5 6 8 4 9 
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 



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f
 

            7654 650.5101361012.5469043088.36496494218.8797507             (32) 

            .7752690.0000135618850.003125635100.06035799 1098    
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Nusselt Number 

 

    

32 92 . 9 0 4 4 7 2 3 161 . 8 2 2 2 9 5 4 4660.17640716050.75010153 








Nu  

              7654 770.3704522401.0005998871.9775505002.85465169          (33)   

              1098 71740.001909324330.017571539930.09803634    

              .7398310.00009481 11  

                                                                                           

Sherwood Number 

 

    

432 42 . 7 8 2 0 8 6 3 042 . 2 0 8 4 7 3 2 3070.3343553011.5100379571.42060488 








Sh

 
                 8765 520.13850664910.4873474701.2133620892.18265441        (34) 

              .099440.0001566478310.003020708860.02639573 11109    

 

The process of weighted residual method are repeated for different values of rG , cG , aH ,  , Q , rP , 

cS  and  . 

 

The following computational results in the table were obtained and compared well with shooting 

technique coupled with fourth order Runge-kutta method.  

 

Table 1: Comparison of  , Nu  and Sh  for various values of rG , cG , Q  and cS (PP-Physical 

             Parameters) 
  Weighted Residual method th4  order R-K 

PP  values   Nu  Sh    Nu  Sh  

rG  2.5 2.86521 0.53944 1.34943 2.86359 0.53931 1.34902 

 5.5 3.77012 0.69197 1.39921 3.76616 0.69173 1.39866 

 7 4.19857 0.75010 1.42060 4.19315 0.74981 1.41999 

cG  4.5 3.59067 0.68694 1.39516 3.58741 0.68673 1.39467 

 5.5 3.83489 0.71293 1.40549 3.83083 0.71269 1.40495 

 7 4.19857 0.75010 1.42060 4.19315 0.74981 1.41998 

Q  0.3 4.02001 1.08149 1.40258 4.01476 1.08098 1.40195 

 1.0 4.19857 0.75010 1.42060 4.19315 0.74981 1.41998 

 2.0 4.63757 0.01876 1.46429 4.63208 0.01877 1.46368 

cS  0.01 4.79802 0.93631 0.35822 4.79293 0.93598 0.35822 

 0.1 4.65693 0.89254 0.56181 4.65179 0.89221 0.56179 

 0.62 4.19857 0.75010 1.42061 4.193156 0.74981 1.41999 

 

 

 

3.  Results and Discussion 
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The computational analysis has been investigated by applying weighted residual method to the resultant 

equations for variations in the governing parameters, the Hartmann number aH , angle of inclination  , 

thermal Grashof number rG , heat source Q , Schmidt number cS , Prandtl number rP , solutal Grashof 

number cG , and reaction rate parameter  . The subsequent values are set as the default parameters for 

the computation: rG = cG =7, Q = =1, rP =0.72, cS =0.62, aH =5 and 030= . The graphs trail these 

values unless otherwise stated. 

 

Table 1 shows the effect of some parameters on skin friction, sherwood and nusselt numbers. It is clearly 

seen that a rise in the solutant and thermal Grashof numbers have an accelerating effect on the skin 

friction, sherwood and nusselt numbers. An increase in heat source parameter enhances the sherwood 

number and skin friction while it retards the Nusselt number because heat within the boundary layer 

reduces. Also, nusselt number and skin friction reduces as the schmidt number rises but have an increasing 

effect on the sherwood number. 

 

Figures 2 and 3 illustrate the velocity and pressure distributions for diverse values of Hartmann number 

aH . It is observed that as the values of magnetic field parameter aH  is rising, the velocity and pressure 

profiles decreases because of the Lorentz force from the magnetic field which retarded convective fluid 

flow. 

 

Figures 4 and 5 show the pressure and velocity distributions for different angles of inclination of the 

magnetic field  , while other parameters are kept fixed at some values. A rise in the degree of inclination 

  resulted in an increase in the effect of the buoyancy force and thereby reduces the force driven the fluid 

flow. Consequently, the momentum and pressure boundary layers decreases. 

 

Figures 6 and 7 represent the influence of the heat source Q  on the pressure and temperature profiles. It is 

noticed that the pressure and temperature distributions rise speedily due to a rise in the parameter value Q

. The figures specify that a rise in the parameter Q , speed up the pressure and thermal boundary layers 

thickness which in turn enhances the pressure and slows down the energy transfer coefficient at the plate. 

 

Figures 8 and 9 represent the effects of chemical reaction rate parameter   on the pressure and 

concentration distributions. An increase in the values of  , decreases the pressure profiles as seen in 

Figure 8. From Figure 9, it is very clear that the reactive solutal profile decrease with a rise in the values of 

 . That is, the reaction rate parameter is a decreasing agent and as a result, the solute boundary layer close 

to the wall becomes thinner. This is as a result of the change of species which is experienced near the wall 

due to the presence of chemical reaction and then decreases the concentration in the boundary layer. 

 

4.  Conclusion  
 

The governing equations of the flow model under consideration are non-dimensionalised and transformed 

to a coupled ordinary differential equations using Lie group. From the results, it was found that, a rise in 

the values of the magnetic field parameter Hartmann or degree of inclination of the magnetic field is 

manifested as a decrease in the flow velocity and pressure profiles. The pressure and temperature 

distributions is seen to increase gradually as the heat source increases while an increase in the chemical 

reaction rate reduces the pressure and concentration distributions. The results of this research has wide 
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areas of applications in pure sciences which includes oceanography, atmospheric sciences, geophysics etc. 

and in technology such as waste disposal, pollution dispersal, aerospace propulsion systems, 

manufacturing processes and many more.  
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