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Abstract: Computational analysis of radiative heat transfer of micropolar variable electric conductivity fluid with a non-

even heat source/sink and dissipative joule heating have been carried out in this article. The flow past an inclined plate with an 

unvarying heat flux is considered. The transformed equations of the flow model are solved by the Runge-Kutta scheme 

coupled with shooting method to depict the dimensionless temperature, microrotation and velocity at the boundary layer. The 

results show that the coefficient of the skin friction and the temperature gradient at the wall increases for regular electric 

conductivity and non-uniform heat sink/source. 
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1. Introduction 

A micropolar fluid comprises of gyratory micro-segments 

that cause fluid to show non-Newtonian activities. The 

inventions of micropolar fluid flow was discovered useful in 

exploratory liquid crystals, colloidal suspensions, body fluids, 

lubricants, turbulent flow of shear, fluid polymeric, 

preservative suspensions, flows in vessels and microchannels. 

The theory of micropolar fluids pioneered by [5] has been an 

energetic research area for long time till present days. 

The phenomenons of the model and the utilizations of 

micropolar fluid was examined by [2], while [9] did 

tentatively investigation to demonstrate that the present of 

minute stabilizers polymeric in fluids can diminish the flow 

impact at the wall up to 25 to 30 percent. The decrease that 

was depicted by the theory of micropolar substances as 

announced in [14], the cerebrum fluid that is a case of body 

fluids can be adequately detailed as micropolar fluids. 

Convective flow fluids containing microstructure have 

many applications, for example, weaken polymer fluids 

substances, various types of suspensions and fluid gems. 

Convective free flow of micropolar fluids past a bended or 

level surfaces has entranced the psyche of researchers from 

the time when the flow model was conceived. Many studies 

have accounted for and examined results on micropolar fluids. 

Investigated to the impact of radiation on MHD convective 

heat and mass transfer flow was analyzed by [3, 7]. Also, [1] 

considered micropolar boundary layer fluid flow along semi-

infinite surface utilizing similarity solution to change the 

models to ordinary different equations. Moreover, [10] 

reported on the viscous dissipation impacts on MHD 

micropolar flow with ohmic heating, heat generation and 

chemical reaction. 

Numerous convective flow are brought on by heat 

absorption or generation which might be as a result of the 

fluid chemical reaction. The occurrence of heat source or 

sink can influence the fluid heat profile that modifies the rate 

of deposition of particle in the structures for example, 

semiconductor wafers, electronic chips, atomic reactors and 

so on. Heat absorption or generation has been thought to be 

temperature dependent heat generation and surface dependent 

heat generation. The analyzed the effect of non-homogenous 
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heat absorption or generation and variable electric 

conductivity on micropolar fluid was carried out by [15]. It 

was seen that the plate dependent heat generation is lower 

contrasted to temperature dependent heat generation. Also, 

[11, 12] carried out study on the influence of thermal-

diffusion and non-even heat source/sink on radiative 

micropolar MHD fluid past a porous medium. 

The effect of dissipation on hydromagnetic fluid and heat 

transfer processes has turned out to be noteworthy in the 

industry. A lot of engineering practices happen at high 

temperature with viscous dissipation heat transfer. Such 

flows have been explored by [17] who examined the 

influence of viscous dissipation on heat and mass transfer of 

magnetodyrodynamic micropolar fluid with chemical 

reaction while [16] considered hydromagnetic micropolar 

fluid of heat and mass transport in a porous medium with 

expanding plate, chemical reaction, heat flux and variable 

micro inertia. In [18], investigation into the MHD Micropolar 

flow fluid with joule heating, viscous dissipation, constant 

mass and heat fluxes was carried out. It was noticed from the 

study that the flow profile rises first within 0 1η≤ ≤  as the 

microrotation parameter rises. Afterward, the flow gradually 

decreases for >1η  as the microrotation parameter rises. Also, 

microrotation moves from negative to positive in the 

boundary layer. 

Considering the referred literature, the aim of the present 

work is to study the viscous dissipation of variable 

electrically conducting micropolar fluid behavior past an 

inclined plate in permeable media with thermal radiation, 

heat fluxes and joule heating for high speed fluid in non-

homogenous heat generation/absorption which have not been 

considered by many researchers. The study is necessary 

because of the industrial application of micropolar fluid. 

Therefore, it is important to study the flow velocity, 

temperature and microrotation boundary layer at the surface. 

2. The Flow Mathematical Formulation 

Convective flow of two-dimensional viscous, micropolar, 

laminar fluid through a semi-finite plate that is inclined at an 

angle α  to the vertical is considered. The magnetic field 

varies in strength as a function of x  that is assumed to be in 

y-direction and defined as = (0, ( ))
�

B B x . The Reynolds 

number is minuet while the outer electric field is assumed as 

zero. Accordingly, the applied external magnetic field is high 

contrasted to the stimulated magnetic field. The density ( )ρ  

of the fluid is inert ( = 0)U∞  with the buoyancy forces 

causing the convective motion. The fluid viscosity µ  is 

considered to be unvarying while the body forces and the 

pressure gradient are ignored. Rosseland diffusion 

approximation for radiation is adopted for the flow 

Considering the assumptions above, the convective 

micropolar fluid taking after the Boussinesq approximation 

may be described by the geometry and subsequent equations. 

 

Figure 1. The flow geometry. 
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where u  and v  are the fluid velocity in x  and y  coordinates 

respectively, K  is the permeability of the porous medium, 

=
µν
ρ

 is the kinematic viscosity, µ  is the dynamic viscosity, 

ρ  is the fluid density, w  is the microrotaion in x  and y  

components, = ( )
2

r
b jµ +  is the micropolar viscosity, j  is 

the micro-inertial per unit mass which is assumed to be 

constant, r  is the microrotation coefficient, k  is the thermal 

conductivity, T  is the fluid temperature, pc  is the specific 

heat at constant pressure, g  is the acceleration due to gravity 

and β  is the thermal expansion coefficient. 

A linear correlation involving the surface shear 
u

y

∂
∂

 and 

microrotation function w  is picked for studying the 

influence of varying surface circumstances for microroation. 

Note that the microroation term = 0a  implies = 0w , that is 

the microelement at the wall are not swiveling but while 

= 0.5a  implies varnishing of the anti-symmetric module of 

the stress tensor that stand for feeble concentration. This 

confirms that for a fine particle suspension at the wall, the 

particle swivel is the same as the fluid velocity but = 1a  

represents the turbulent boundary layer flows. 

Using Rosseland diffusion approximation for radiation [8, 13]. 
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where σ  and δ  are the Stefan-Boltzmann and the mean 

absorption coefficient respectively, taken the temperature 

difference in the flow to be sufficiently small such that 
4

T  may 

be consider as a linear function of temperature, introducing 

Taylor series to expand 
4

T  around the free stream T∞  and 

ignore higher order terms, this gives the approximation 

4 3 44 3T T T T∞ ∞≅ −                             (7) 

Using equation (7), equation (6) can be express as. 
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The non-uniform heat absorption or generation is 

represented as [11] 
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where *λ  and λ  denote the heat sink/source and space 

coefficients temperature dependent respectively while T∞  is 

the free stream temperature. Here, > 0λ  and * > 0λ  stand 

for heat source but < 0λ  and * < 0λ  depict heat sink. 

In this study, it is assumed that the introduced magnetic 

field strength ( )B x  is capricious and it is represented as 

0( ) =
B

B x
x

, where 0B  is constant. Also, the electrical 

conductivity σ  depends on the fluid velocity and is defined 

as 0= uσ σ , where 0σ  is constant see Cortell (2007) 

Using the following dimensionless variables; 
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where ψ  is the stream function, 0U  is the reference velocity 
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Using equations (8) and (9) along with the electric 

conductivity dependent fluid velocity, variable magnetic field 

and equation (10) in equations (1)-(5) to obtain, 

2
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The boundary conditions become 
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 is the vortex viscosity term, 
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the magnetic field term, 
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The essential engineering quantities of interest for this 

flow are the local skin friction fC  and Nusselt number uN  

given as: 

2

2
= ,   =

( )

w w
f

ww

xq
C Nu

k T Tu

τ
ρ ∞−

             (16) 

wτ
 and wq

 are respectively taken as 

=0 =0

= ,   =w w

y y

u T
q k

y y
τ µ    ∂ ∂

   ∂ ∂   
             (17) 

Therefore, 

[ ]
1 1

1 12 2
1

= (2 ) 1 (1 ) (0),    = (2 )
(0)

f x x xC Re a f Nu Reδ
θ

− −′′+ − (18) 

The computational values for fC  and xNu  are obtained 

from equations (18) 

Table 1. Comparison of ' (0)f
′

 for = = = = = = 0r cG R Eδ ε α , various 

values of a . 

a  [4] [6] [15] Present results 

0.0 0.627547 0.627555 0.627498 0.623534 

0.2 0.766758 0.766837 0.767066 0.766831 

0.5 0.889477 0.889544 0.892366 0.891784 

0.75 0.953786 0.953975 0.956365 0.954523 

1.0 1.000000 1.000000 1.002125 1.001986 

 

Table 2. Values of ' (0)f
′

 and '(0)θ  for different values of M , cE , λ , *λ , φ , and δ  on PP-Physical Parameters. 

PP  values ' (0)
′

f  
'(0)θθθθ  PP  values  ' (0)

′
f  

'(0)θθθθ  

M  1 1.11795 6.33597 R  0.1 1.01758 5.36740 

 3 1.15638 7.72407  0.5 1.08877 5.55485 

 5 1.19926 8.96274  0.7 1.15301 5.84632 

 7 1.24187 10.11891  1.0 1.20395 6.03903 

cE  0.2 1.11101 5.94768 φ  0.007 1.11204 5.67261 

 0.5 1.17319 6.35698  0.1 1.11127 5.80543 

 0.7 1.21929 6.66562  0.3 1.11126 6.08932 

 1.0 1.29671 7.19343  0.5 1.11303 6.37080 

λ  0.0 0.52826 2.79851 *λ  0.0 1.01758 5.36740 

 0.1 0.60853 3.19403  0.5 1.11101 5.94768 

 0.3 0.82009 4.29704  1.0 1.19538 6.48375 

 0.5 1.11101 5.94768  1.5 1.27299 6.98646 

3. Results and Discussion 

The computational outcomes for the coupled differential equations are gotten for the dimensionless microrotation, 

temperature and velocity profiles. In the analysis, the default parameters value are taken as: 
0= 0.5, = 0.73, = 2.5, = 0.2, = 2, = 0.1, = 0.2, = 0.5, = 30 , = 1, = 0.5r r ca P G R E Mβ ε α δ λ  and * = 0.5λ . The values depend on 

the decision of existing articles in view of inaccessibility of investigation figures for vortex viscosity and micro-inertia density 

parameters, appropriate values are chosen to confirm the polar impact on flow properties. 

 

Table 1 depicts the computational outcomes that 

demonstrate the action of microrotation parameter a  on the 

fluid flow parts of the present result contrasted with the 

existing results. The comparison is observed to be in a superb 

agreement as appeared in the table. 

Table 2 represents the computational results, that show the 

influence of some fluid properties on the flow and heat part 

of the investigation. It is noticed from the table that an 

increase in the values of parameters M , cE , λ , *λ  and β  

enhances the skin friction and the temperature gradient at the 

plate due to an increase in the flow and temperature boundary 

layer thickness. Additionally, an increase in values of δ  
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causes shrinking in the flow at the plate but enhances the 

thermal gradient at the surface. 

Figures 2 and 3 portray the fluid flow and microrotation 

profiles for various values of the magnetic field term M . It 

is seen from Figure 2 that the flow diminishes as the values 

of M  increases because of the influence of Lorentz forces 

that retard the convective fluid motion. Figure 3, affirmed 

that as the values of the magnetic field parameter increases 

the microrotation near the plate within the range 0 1.2η≤ ≤  

increases but reduces as it distance away from the surface 

within the range 1.2 5η≤ ≤ . The outcomes demonstrate that 

the magnetic field might be use to maintain the flow and heat 

transfer properties. 

 

Figure 2. Velocity fields for different values of M . 

 

Figure 3. Microrotation fields for different values of M . 

Figures 4 and 5 show the effect of the vortex viscosity δ  

on the fluid velocity and microrotation field. It is found that a 

rise in the values of δ  initial abatement the fluid velocity at 

1.6η ≤  but increases at range 1.6 5η≤ ≤  while 

microrotation profiles near to the surface at 2η ≤  decreases 

and later increases as it moves away from the surface. The 

reason is because the viscous friction within the fluid tends to 

organize the flow into a collection of irrotational vortices and 

a moving vortex carries with it some angular and linear 

momentum and energy. 

 

Figure 4. Velocity fields for different values of δ . 

 

Figure 5. Microrotation fields for different values of δ . 

Figures 6-9 represent the microrotation and temperature 

fields for different values of temperature dependent and 
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surface temperature heat absorption or generation terms λ  

and 
*λ . Figure 6 and 8 demonstrated that a rise in the values 

of λ  and 
*λ  decreases the microrotation near the surface at 

1.5η ≤  and it increases as it far away from the surface. Also, 

in Figures 7 and 9 the temperature distribution increases as 

the parameters λ  and 
*λ  increases respectively. This is 

because the transfer of thermal energy across a well-defined 

boundary decreases that it in turn increases the amount of 

heat within the system and thereby causes rise the profiles. 

 

Figure 6. Microrotation fields for different values of λ . 

 

Figure 7. Temperature fields for different values of λ . 

 

Figure 8. Microrotation fields for different values of *λ . 

 

Figure 9. Temperature fields for different values of *λ . 

 

Figure 10. Velocity fields for different values of φ
.
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Figure 10 depicts the effect of porosity term φ  on the 

dimensionless velocity. It is evidenced that the flow field 

decreases as the porosity parameter rises. This is as a result 

of the wall of the plate that gives an additional opposition to 

the flow mechanism by influencing the fluid to move at a 

decelerated rate. 

 

Figure 11. Temperature fields for different values of R . 

 

Figure 12. Temperature fields for different values of cE
.
 

The influence of radiation on the temperature profiles is 

given in figure 11. It is noticed that as the values of R  

increases, there is corresponding enhancement in the 

temperature fields which results in an increase in the thermal 

boundary layer thickness and thereby decreases the amount 

of emission or transmission of energy in the form of waves or 

particles through space or through a material medium out of 

the system. 

Figure 12 represent the consequent of variation in the 

Eckert number cE  on the temperature distribution. Eckert 

number expresses the relationship between kinetic energy 

and enthalpy difference, and is used to characterize heat 

dissipation. It is noticed that the temperature field increases 

with a rise in the values of cE . This is due to increase in the 

temperature boundary layer thickness that reduces the 

amount of energy dissipating out of the system and thereby 

causes a rise in the heat distribution 

4. Conclusion 

Numerical simulation was carried out for dimensionless 

boundary layer equations of convective heat transfer of a 

hydromagnetic and micropolar fluid past inclined surface 

with non-uniform heat sink/source. It is observed from the 

study that, the magnetic field decreases the flow rate and 

angular velocity while the temperature dependent and 

surface dependent temperature heat sink or source 

parameters as well as viscous dissipation parameter 

increases angular velocity and temperature distributions. 

The vortex viscosity parameter decreases the flow and 

microrotation profiles near the wall. 
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