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Abstract. In this study, the analysis of inherent irreversibility of chemical reactive third-grade poiseuille flow of a
variable viscosity with convective cooling is investigated. The dissipative heat in a reactive exothermic chemical
moves over liquid in an irreversible way and the entropy is produced unceasingly in the system within the fixed
walls. The heat convective exchange with the surrounding temperature at the plate surface follows Newton’s law of
cooling. The solutions of the dimensionless nonlinear equations are obtained using weighted residual method
(WRM). The solutions are used to obtain the Bejan number and the entropy generation rate for the system. The
influence of some pertinent parameters on the entropy generation and the Bejan number are illustrated graphically
and discussed with respect to the parameters.
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1. Introduction

Theoretical analysis on non-Newtonian fluids flow has presently recieved impressive consideration due to its significant
applications in the process industry. Because of their intricacy, non-Newtonian liquids can’t fit into a solitary constitutive
model and various models have been established for various classes of non-Newtonian fluids. The flow activity of these fluids
can’t be sufficiently clarified on the premise of the traditional viscous linear model. Among the several suggested models is the
class of third-grade fluids. Broad studies on the fluids have been taken into consideration [1-3]. According to one of the
previous studies [4], the overall details of the stability and uniqueness of thermodynamics constitutive models of the distinction
type with third-grade fluid as an exceptional instance were examined. For problems relating to the heat transport for third-
grade fluids, a whole thermodynamics analysis of the constitutive function was carried out [5].

Chemical non-Newtonian reactive flow of viscoelastic polymer such as lactic acid production can be very sophisticated [6-
8]. An inclusive depiction of several complex polymers in diverse systems has been recently provided [9] and the significance
of modifying mathematical models to define transport phenomena more correctly was stressed. A number of scholars have
recently investigated the numerically and analytically solution of non-Newtonian chemical reaction in the systems processing.
Among all, one of the sudies adopted numerical simulation to examine the Oldroyd-B viscoelastic flow with thermal
convection and Arrhenius kinetics[10]. Furthermore, other research conducted and investigated the flow and stability of the
combustible liquid by adopting a potent and swiftly convergent analytical approximation [11 & 12], and also investigated
Newtonian cooling with the combustible flow gel propellant in a hybrid rocket chamber using a spectral quasilinearization
numerical method [13]. They exploited the third-grade Rivlin-Ericksen model for viscoelasticity.
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However, it is known that fluid physical properties can change significantly with temperature. When the effects of variable
viscosity are taken into consideration, the flow characteristics are significantly changed compared to constant physical
properties. As a result, the influence of radiation and variable viscosity on the energy and mass transfer in MHD fluid flow past
a permeable plate was examined [14]. Moreover, studied significance of variable viscosity and thermal conductivity of
micropolar fluid in the presence of magnetic field was investigated [15]. Another study on the effect of thermal conductivity
and variable viscosity on the hydromagnetic flow through a vertical plate was carried out [16]. It was found that the velocity
distribution rises with the reduction in the thermal conductivity parameter. On the other hand, the radiative heat transfer of
variable viscosity and thermal conductivity effects on the inclined magnetic field with dissipation in a non-Darcy medium was
analyzed [17].

Currently, the entropy generation modeling is a lively area of thermal engineering sciences because heat moves through a
liquid in an irreversible way that brings about changes in fluid particles entropy. This is due to the difference in the fluid
particle temperature that causes disorderliness in the fluid particles motion. Obviously, this will diminish the system efficiency
due to the fact that several thermal processes occur at a very high temperature; the main goal of the present study is to examine
the thermal performance of the flow in a channel by ignoring time-dependent effects [18]. This is essential in measuring the
productivity of the system since the amplified entropy reduces the energy level of the system. The target approach follows the
second law of thermodynamics based on an original pioneering work [19], that has transformed the thermal optimization of
engineering processes for non-Newtonian fluids [20].

The third-grade fluid with Vogel viscosity to examine the entropy generation in a channel was conducted in a study [21]. It
was found that diverse viscosity parameters can either amplify or reduce the entropy production in the channel. In a careful
investigation, the computational solutions for the effect of entropy on the forced convection flow in a channel was carried out
[22]. Recently, research on the entropy generation for several flow patterns is predictable through the results of some previous
studies [23 - 26].

The main interest of this study is to examine the inherent irreversibility reactive fluid flow and variable viscosity with third-
grade liquid in poiseuille flow conditions. The flow formulation model is provided in section 2. In section 3, a weighted
residual method is developed and implemented for the solution process. In section 4, the entropy generation analysis is
presented. In section 5, the graphical results are shown and discussed accordingly for various entrenched parameters in the
flow.

2. Mathematical Formulation of the Flow

Consider laminar, the isotropic chemical reactive variable viscosity of an incompressible third-grade fluid flow within fixed
parallel horizontal plates as illustrated in Figure 1. The non-Newtonian model is employed to cause the viscoelastic effects.
The flow is simulated by Arrhenius chemical kinetics and assumed to be driven by the combined effect of the buoyancy force
and the axial pressure gradient. The flow is considered to be in the direction of x with y - axis normal to the flow. The wall
surfaces are subjected to exchange of heat convection at the ambient temperature. Ignoring time-dependent effects and the
fluid reactive viscose consumption, the momentum and heat balance governing equations are as follows [14]:
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Fig. 1. Geometry of the flow
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the impose boundary conditions are:
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The temperature dependent viscosity ( z ) is defined as /7(T ) = e . Introducing the dimensionless quantities (4) into

Egs. (1-3) along with the temperature dependent viscosity result in:
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Therefore, the governing equation reduces to:
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The corresponding boundary conditions are as follows:

u= O,ﬁ =-Bib,at,y =1
dy

u=0,—=Bif,at,y=0
dy

3. Method of solution

The idea of weighted residual method [24, 25] is to look for an approximate result in the polynomial form of the differential
equation as follows:

D[v(y)]=f inthedomainR, A4, [v]=y, on oR ®)

where D [v] represents a differential operator relating non-linear or linear spatial derivatives of the dependent variables v ,
S is the function of a known position, 4, [v ] denotes the approximate number of boundary conditions with R as the domain

and OR as the boundary. By assuming an approximation to the solution v ( y ) , the following form is expressed:

v(y)zw(yaalaa29a3"'an) C)

which depends on a number of parameters q,,a,,a,..a, insuch a way that for arbitrary value a/s the boundary conditions are

n

satisfied and the residual in the differential equation becomes:
E(y.a,) = LW(y,a,) = () (10)

The aim is to minimize the residual E(y,a) to zero in an average sense over the domain. That is:

[EG,aWdy=0,i=1,2,3,..n (11
Y

where the number of weight functions W, is exactly the same as the number of unknown constants g, in w . Here, the
weighted functions are chosen to be Dirac delta functions where W, (y)=3J(y —y,) and the error is zero at the chosen nodes
v, . The integration of Eq. 11 with W,(y)=06(y —y,) resultsin E(y,a,)=0.By applying WRM to Egs. (5-7), assuming a
polynomial with unknown coefficients or parameters to be determined later, this polynomial is called the trial function which is
defined as follows:

Journal of Applied and Computational Mechanics, Vol. 4, No. 3, (2018), 167-174



170 S.O. Salawu and S.I. Oke, Vol. 4, No. 3, 2018

u() =Yy, 00) =3 by (12)

Imposing the boundary conditions (7) on the trial functions (12) as well as substituting the trial functions into Egs. (5 & 6) to
obtain the residual results in:
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The residual errors are minimized to zero at some collocation points at a regular interval within the domain when
G, =2,m=0.5,Bi =1,0=01,0=1,1=050"=1,6=1, and G=05. That is, v, =0b-a)k /N , where
k=12,.,N -1, and a=0,b =1,N =10, which are solved using MAPLE 2016 software to obtain the unknown
coefficients. Therefore, the dimensionless velocity and heat equations are:

u=-24.22541072y" +121.1270536° —258.385123 " +306.7781705y"

—222.6386435y° +102.9259587y° —30.74682807 y* +5.604150107 " (15)

—0.8883527363y" +0.4490251210y

T =1.598167156x1077 y'* —~8.019179894x10~" »” +1.737351190x 107 * —
2.127976190x107 y” +1.620173611x107° y° —7.937918162 %10 »° + (16)
2.503503638x1077 y* —4.937301587x107* y* —=0.250y" +0.250y +0.250

The process of weighted residual method is repeated for different values of the parameters G,,m,Bi,c,w,4,0,6 ,and G .

4. Entropy Generation Analysis

The fluid physical properties can change significantly with temperature when the effects of variable viscosity are taken into
consideration. The overall entropy generation equation for the non-Newtonian flow per unit volume is define as [19]

By = (VT +24 (17)

2
0 0

The heat transfer irreversibility is the first term of Eq. (17), while the second term is the viscous dissipation entropy generation.
By Eq. (17), the dimensionless entropy generation number is obtained as:

2 2 2 2 2
N, =%=(ﬁj JAofdu )| oo ol A1 (18)
R’T 'k do r \dy dy

From Eq. (17), the first term is assigned as N, and the second term is assigned as N, , i.e,

2 2 2
N, = [ﬁj s NV, :i_w[d_uJ e +25[d_ll] (19)
dy r \dy dy

The Bejan number ( Be ) is defined mathematically as follows:

pe-M__ M L, N (20)
Ng N/ +N, 1+¢ N,

The N and Be are respectively represented in the Figs. 7-12.
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5. Results and Discussion

The associated graphical results of Eqgs. (5-7) are presented for varying parameters values. Fig. 2 represents the response of
the fluid flow to the variation in the variable viscosity parameter ( o ). It can be seen that a rise in the parameter o diminishes
the fluid viscosity and thereby congruently weakens the fluid’s opposition to the flow. This basically leads to amplification in
the fluid velocity as illustrated in the following figure. The reaction of the fluid velocity to changes in the values of the non-
Newtonian parameter 6 is depicted in Fig. 3.
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Fig. 2. Influences of o on velocity Fig. 3. Influences of & on velocity

The parameter & that is linked to the shear rate terms diminishes the influence of the source terms and consequently
decreases the shear rates. The reason is that a rise in the values of J increases the viscoelasticity of the fluid that in turn
decreases the flow velocity as illustrated in the the following graph. Figs. 4 and 5 illustrate the influences of Biot number Bi
on the flow and temperature fields.

016 /\
0.14- 05
012
010 04
—_—RBi=05 e o — Bi=035
T o -~
02 ——Bi=08 o S~ |——B=0s
——Bi=12 ~ ~ |-—Bi=12
0.06+ Bi=15 b Bi=13
03
0.04 e -~
=5 e
_/ ~
0021/ ~
02

Fig. 4. Influences of Bi on velocity Fig. 5. Influences of Bi on temperature

As it can be seen, in the temperature boundary condition (7), the more the Biot numbers, the higher the convective cooling
at the plate surfaces, and thereby correspondingly, the lower the temperatures at the surfaces and the bulk fluid. The whole
temperature profile reduces with an increase in the Biot number as the fluid persistently regulates to the lower surface
temperatures. The decreased temperatures congruently diminish the fluid viscosity that in turn reduces the fluid momentum
over the viscosity coupling. As seen earlier, such a coupling depends on the parameters o that results in the pronounce
changes in the velocity and heat distribution. Fig. 6 shows the effect of the reaction parameter A on the temperature field.

A rise in the parameter values A causes a significant rise in the viscous heating source and the reaction rate, and
consequently magnifies the temperature distribution. This is due to straightening in the momentum viscosity coupling that
results in reasonable rises in the flow temperature. The response of entropy generation rate to the Biot number is displayed in
Fig. 7. As it was observed, an increase in the convective cooling Bi decreases the entropy generation rate.

The reason is that the irreversible heat flows from the hot surfaces to the ambient in a way that supports the Newtonian law
of cooling that leads to a reduction in the entropy of the fluid region near the cool surfaces. Smaller thermal conductivity is
related to higher Biot number as well as substantial cooling. Fig. 8 represents the reaction of entropy generation rate to various
values of the Frank-Kamenetskii parameter A . The figure shows that a rise in the reaction parameter boosts the entropy
generation rate in the channel.
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As is clear, when the internal heat generation rises, the reacting reagents is enhances as well. The exothermic chemical
relation increases the heat transfer rate from the combustion region to the cool surface. Furthermore, heat is conveyed over the
fluid to melt the fluid viscosity in other to enhance collision of particles. Accordingly, extra heat is generated by the interaction
of viscous fluid particle that in turn increases the entropy generation. Figur. 9 depicts the influence of non-Newtonian
parameter & on the entropy generation rate. As can be seen, the entropy production reduces as the viscoelastic material
parameter enhances. The reason is an increase in the fluid particle bonding force that makes the fluid to be more viscoelastic.
Therefore, the entropy generation in the system reduces. The descending trend is due to the imbalance between the convective
cooling and the nonlinear heat at the surfaces as the viscoelastic parameter increases. Fig. 10 shows the changes in Bejan
number with difference values of Biot number. A rise in the convective cooling Bi amplifies the irreversibility of heat
transfer in the system.
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The results indicate that heat transfer to the wall increases as Biot number increases. Therefore, irreversibility as a result of
fluid friction relaxes over heat transfer as the Biot number rises. Accordingly, the Bejan number is enhances. Fig. 11
demonstrates the action of varification in the values of Frank-Kamenetskii parameter 4 on the Bejan number. It can be
observed that a rise in the parameter A results in a high rise in the irreversibility of heat transfer due to an exothermic
chemical reaction that takes place in the fluid flow through fixed walls. Therefore, heat transfer rules over the irreversibility of
the fluid friction as the chemical kinetic influence is enhances, thereby increases the Bejan number profiles. Fig. 12 illustrates
the effect of non-Newtonian parameter 6 on the Bejan number. It is shown that the Bejan number increases as the non-
Newtonian parameter rises. The reason is that the bonding force of the fluid particles rises as the viscoelastic parameter
enhances. Therefore, heat transport irreversibility increases and hence causes an increase in the Bejan number.

0324

Fig. 12. Influences of J on the Bejan number

6. Conclusion

In the present study, the irreversibility of heat in an exothermic chemical reaction of non-Newtonian fluid through fixed
walls with convective cooling was examined. This analysis was carried out using the second law of thermodynamics. The
dimensionless momentum and heat equations were solved using WRM. The solutions were used to obtain the entropy
generation and the Bejan number. The investigation reveals that:

(i) An increase in the Frank-Kamenetskii parameter needs to be monitored because it contributes meaningfully to the ruin of
the thermo-fluid in the system while the viscoelastic material effect as well as the Biot number diminish the entropy profile.
(i) A rise in the Frank-Kamenetskii was observed to amplify the prevailing irreversibility of heat transfer over the fluid
friction. Moreover, enhancing the Biot number parameter decreases the fluid friction and increases heat transfer
irreversibility in the fixed walls.

Nomenclature

a  Channel characteristic length (m) Ns  Entropy generation number

A Reaction rate constant P Pressure (kgms ™)
Bi  Biot number O  Heat of reaction ()

C  [Initial species concentration O, Heat generation (¥m K ")
E  Activation energy R Universal gas constant

g  Acceleration due to gravity (ms ") r  Activation energy parameter
G Pressure gradient parameter T  Temperature (K')
Gr  Thermal Grashof number T, Wall temperature (K )

5 Heat transfer coefficient (7 ) i Axial velocity (ms ™)

K Boltzmanns constant Y Coordinate system (m)

k  Thermal conductivity (#m 'K ') ¥  Dimensionless coordinate system (m)
[ Plancks number

Greek letters

B Expansivity coefficient (K ') &  Variation viscosity

6 Dimensionless temperature 4, Viscosity dynamic (kgm 's™")
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P Density of the fluid (kgm ) A Frank Kamenetskii parameter

¥ Material coefficients 0  Non-Newtonian parameter
v Vibration frequency @  Viscous heating
o Variable viscosity (kgm 's ")
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