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 9 

Abstract 10 

This paper investigates the plasma irregularities at different longitudes in the month of March 2015; a 11 

period that consists of both quiet and disturbed geomagnetic conditions. The average rate of change of 12 

TEC index (ROTIave), derived from Global Positioning System (GPS) measurements obtained at South 13 

America, Africa, Asia and Oceania equatorial regions, was used as indicator. The observations 14 

revealed significant longitudinal differences for both quiet and disturbed conditions. The quiet-time 15 

observations indicate that irregularities were most frequent in the American and African sectors, it is 16 

rarely observed in the Asian sector and mostly absent in the Oceania longitudes. The strength is 17 

however observed to decrease eastward i.e. it is most prominent in the American sector (up to ~1.6 18 

TECU/min.) and absent in the Oceania longitudes. The results of the investigation of the 17 March, 19 

2015 storm event revealed that the storm appeared not to hinder the development of irregularities in all 20 

the stations in the America sector during the night following the main phase. However, significant 21 

longitudinal variation is observed within the sector on the first night following the storm’s recovery. In 22 

the African sector, the storm inhibits the development of irregularities in all the stations during the 23 

storm days considered: a development that is fundamentally different from the America sector. 24 

Generally, no significant storm effect is observed in the Asian and Oceania stations considered. The 25 

storm-time longitudinal variations of irregularities have been partly attributed to the storm timing and 26 

significant longitudinal difference in the action of storm-induced related drivers. 27 

 28 

Keywords: Irregularities; ROTI; Scintillation; Geomagnetic storm. 29 

 30 

1. Introduction 31 

The ionized portion of the earth’s upper atmosphere sometimes becomes unstable and develops plasma 32 

density irregularities. These irregularities in the ionosphere scatter radio waves in the frequency range 33 

of 100 MHz–4 GHz (Basu et al., 1988; Aarons, 1993; Aarons and Basu, 1994) causing rapid 34 

fluctuation in the intensity and phase of radio signal; a process known as ionospheric scintillations. 35 

Ionospheric scintillations mainly occur around the equatorial region essentially at night, shortly after 36 

local sunset and are associated with the Rayleigh-Taylor and F2 layer plasma drift instabilities. The 37 

presence of irregularities in the ionosphere are believed to be the primary source of ionospheric 38 

scintillation. Ionospheric scintillation degrades trans-ionospheric signals, resulting in signal fading 39 

below the fad margin of the receiver, and leading to the signal loss and cycle slips (Kintner et al. 2007; 40 

Tanna and Pathak 2014).  41 

 42 

Many observation techniques such as the digisonde, the GPS, optical imager and many more have been 43 

employed to study the ionospheric irregularities at different regions and report of the investigations 44 

have been documented (e.g. Abdu et al., 1981; Hysell and Burcham, 1998; Su et al., 2008; Lynn et al., 45 

2011).  For examples, the investigations by Woodman and LaHoz (1976), Yeh and Liu (1982), Basu 46 
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and Basu (1985), Muella et al. (2009) and many others have shown that the occurrence of irregularities 47 

depends on local time, season, latitude, solar cycle and magnetic activity. Basu et al. (1988) reported a 48 

maximum occurrence of scintillation during the high solar activity period. They also found that 49 

irregularities/scintillations were most pronounced around the equatorial ionization anomaly (EIA); a 50 

region on both sides of the dip equator (about ± 15o) where the highest electron content and gradients 51 

are found to exist. Also, Muella et al. (2009) found that on geomagnetically disturbed nights, 52 

scintillation activities seemed to be strongly affected by the penetration of magnetospheric electric 53 

fields.  54 

 55 

The occurrence of geomagnetic storm may trigger various physical processes which affect the plasma 56 

dynamics and may alter the background ionospheric morphology. The disturbance may enhance or 57 

impede the evolution of ionospheric irregularities, particularly at the equatorial region, with a 58 

consequent effect on scintillations of radio signals. Several studies had been conducted to examine the 59 

effect of geomagnetic storm on the occurrence of ionospheric irregularities at different sectors of the 60 

world (e.g. Aarons, 1991; Basu et al., 2001; Biktash et al., 2004; Chu et al., 2005; Li et al., 2006; 61 

Campos de Rezende et al., 2007; Li et al., 2008; Oladipo and Schüler et al., 2012, 2013; Ngwira et al., 62 

2013; Deng et al., 2015). For example, Aarons et al. (1997) reported a modification in the diurnal 63 

pattern of irregularities during geomagnetic storm event over the American equatorial region. Such 64 

modification in the pattern of ionospheric irregularities was reported by Oladipo and Schuler (2013) 65 

over the African sector. They found that the occurrence of irregularities is affected by the local time of 66 

the storm’s main phase.  67 

 68 

A number of studies has investigated the effect of the 17 March, 2015 geomagnetic storm event on the 69 

dynamics of the ionosphere at different locations many of which have been reported in special issues in 70 

some journals (e.g. Zhang et al., 2015; Yadav et al., 2016; Rajesh et al., 2017; Hairston et al., Huang et 71 

al., 2016; Kuai et al., 2016 Lyons et al., 2016; Huba et al., 2016; Kil et al., 2016; Patra et al., 2016; 72 

Zhou et al., 2016; Spogli et al., 2016; Ray et al., 2017; Borries et al., 2016; Nava et al., 2016; Ikubanni 73 

et al. 2018). Some of the area covered by these studies include modeling, observation, data and 74 

assimilation (see Zhang et al. 2017). In all the collections, Kil et al. (2016), Patra et al. (2016), Zhou et 75 

al. (2016), Spogli et al. (2016), Ray et al. (2017) and Rajesh et al. (2017) have investigated the low 76 

latitude ionospheric irregularities at different locations, mostly in the Asian longitudes. The aim of this 77 

paper is to investigate the longitudinal variation of ionospheric irregularities during this storm event. 78 

Simultaneous investigation at different longitudes under the same external condition may provide 79 

important information that are still relevant which may improve our current understanding on the 80 

physical mechanisms responsible for the development of irregularities at individual sector. In this 81 

study, we employed GPS data obtained receivers located in South American, African, Asian and 82 

Oceania equatorial and low latitude stations. Using the GPS technology has been considered ideal to 83 

study ionospheric irregularities and has provided a means to obtain a general pattern of global 84 

ionospheric irregularities distribution and its variability. 85 

 86 

2. Data and Method of Analysis 87 

Different observation techniques have been used to study the irregularities in the ionosphere. In this 88 

paper, the ionospheric irregularities during the period 01-31 March, 2015, comprising both quiet and 89 

disturbed periods, is investigated using the fluctuation index derived from the GPS measurements. The 90 

GPS data are the simultaneous measurements from the receivers located within the equatorial region in 91 

the South American, African, Asian and Oceania sectors. The receivers are all part of International 92 
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GNSS Service (IGS) network of receivers whose measurement are archived in Receiver INdependent 93 

EXchange (RINEX) format and are available at ftp:/geodaf.mt.asi.it/GEOD/GPSD/RINEX. Table 1 94 

shows the geophysical detailed of the data sites used for the investigation. We have used the GPS-TEC 95 

analysis software developed by Gopi Seemala of the Indian Institute of Geomagnetism to estimate the 96 

value of TEC from the GPS measurement. In our estimation, an elevation angle cut-off of 300 was 97 

adopted in other to eliminate the multipath effect on the measurements. 98 

 99 

Many researchers have used different fluctuation indices to represent ionospheric irregularities. In this 100 

study, the Rate of change of the TEC index (ROTI) is employed. ROTI is a parameter derived from the 101 

time variation of TEC (i.e. rate of change of TEC (ROT) given by equation 1).  Pi et al. (1997) 102 

calculated it, based on the standard deviation of ROT over a 5-minute period and is given by the 103 

expression in the equation 2 104 

dt

dTEC
ROT =

                                                           (1) 
105 

 106 

22 ROTROTROTI −=
         (2) 

107 

Mendillo et al. (2000), using the expression in equation 3 computed the average ROTI (ROTIave) 108 

(ROTIave is a good proxy that indicate the 30-minutes phase fluctuation level over a location.) as the 109 

average of ROTI over 30 min interval for a satellite and then the average over all satellites in view. 110 

This result gives the average level of irregularities (phase fluctuation) for half an hour over the station.  111 
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113 

where n is the satellite number, h is hour (0, 0.5, 1,…23.5, 24 UT), i is the 5 min section within half an 114 

hour (i = 1, 2, 3, 4, 5, and 6), nSat (0.5 h) is the number of satellites observed within half an hour, and 115 

k is the number of ROTI values available within half an hour for a particular satellite. Adopting the 116 

classification by Oladipo and Schüler (2013), the value of ROTIave ≥ 0.4 TECU/min is considered to 117 

indicate the presence of background ionospheric irregularities in this investigation. Oladipo and 118 

Schüler (2013) had earlier categorized the values of ROTIave as follows: ROTIave < 0.4 to indicate the 119 

absent of phase fluctuation activity, 0.4< ROTIave <0.8 to indicate that there is phase fluctuation 120 

activity, and ROTIave  > 0.8 to indicate severe phase fluctuation activity. 121 

 122 

3. Results and discussion 123 

3.1 Ionospheric irregularities during quiet condition 124 

Figures 2 - 5 show the diurnal plots of the average rate of total electron content index (ROTIave) index 125 

over South America, Africa, Asia and Oceania region respectively for all the days in the month of 126 

March, 2015. The figures indicate that irregularities were largely present in most of the stations before, 127 

during and after the geomagnetic storm days particularly in the South American. The frequency of 128 

occurrence is higher at South America and African sectors and is less at the other two longitudes 129 

particularly over Oceania. The average behavior for ten quietest days of the month was further 130 

analyzed and the results presented in Fig. 6. The results of the analysis indicate that ionospheric 131 

irregularities show a significant longitudinal difference. Irregularities were observed in the South 132 

American and African sectors only and are generally registered between 19:00 LT -00:00 LT in most 133 

of the stations. The magnitude is generally found to decrease eastward during the quiet condition. In 134 
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other words, strength of the irregularities was found to be most severe in the South American sector 135 

(up to about 1.6 TECU/min.), rarely observed in the Asian sector and were absent over the Oceania.  136 

 137 

Electric field due to E-region conductivity plays a significant role in plasma dynamic of the equatorial 138 

region. The electric field (E) in conjunction with the magnetic field (which about horizontal at the 139 

equatorial region) produces an E X B electrodynamics force that affect plasma distribution in the 140 

region. The direction of the force is such that it is upward (or downward) during the day (or night) 141 

when the electric field is eastward (or westward). In addition, the action of the F-region dynamo during 142 

the post-sunset hours enhances the daytime eastward electric field. This intensifies the upward motion 143 

of plasma during that periods to higher altitudes where the collision frequencies are low and hence 144 

lower recombination rate. The result is enhancement of the F-region electron density during that period 145 

(a phenomenon known as pre-reversal enhancement (PRE)). PRE have been reported to play an 146 

important role in the development of post-sunset ionospheric irregularities (Fejer et al., 1999). The 147 

upward density gradient between the topside F-region plasma lifted by the enhanced E X B force after 148 

sunset and the depleted bottom-side E-region plasma due to the absence of solar radiation creates 149 

plasma instability which give rise to ionospheric irregularities. This may account for the irregularities 150 

observed over South American and African longitudes between 19:00 LT -00:00 LT.  151 

 152 

Large scale ionospheric irregularities are generated from diffusion of plasma from high ionospheric 153 

altitude (Ngwira, et al., 2013). Therefore, the eastward decrease in the strength of ionospheric 154 

irregularities may be an indication that it is either the magnitude of daytime eastward equatorial 155 

electrojet (EEJ) current reduces from west to east near the post-sunset hours or there is a daytime 156 

westward electric field (or counter EEJ) imposed on the normal daytime eastward field and which 157 

intensifies from east to west. More works may be required in this direction. Strong EEJ current may 158 

implies strong fountain effect (i.e. strong E X B plasma drift). Strong formation of E X B upward 159 

plasma drift may result into a sharp density gradient which may favor the development of large scale 160 

irregularities. 161 

 162 

3.2 Ionospheric irregularities during the 17 March, 2015 geomagnetic storm. 163 

The 17 March, 2015 is one of the most intense storm events in this present solar cycle (solar cycle 24) 164 

with SYM-H minimum value of -234 nT as shown in Fig. 7. The Figure also include from the upper 165 

panel to the bottom: the interplanetary magnetic field (IMF-Bz) and (IMF-By) components, the 166 

planetary Ap and Kp indices, the proton density (Np), the solar wind speed (Vz), the symmetric (SYM-167 

H) and asymmetric (ASYM-H) horizontal components of magnetic measurement, the solar wind 168 

temperature and the dynamic pressure (P) for the period of 1 – 31 March 2015. The 17 March, 2015 is 169 

characterized by a dramatic enhancement of ring current (indicated by H-component of the 170 

geomagnetic field) which is a unique feature of coronal mass ejections (CMEs)-driven storms 171 

(Pokhotelov et al., 2009). The storm activity started after the CMEs that was produced by long 172 

duration C9 solar flare hit the Earth (Borries et al., 2016). Its arrival generated a storm sudden 173 

commencement (SSC), which occurred on 17 March 2015 and its signature is observed by the sudden 174 

increased in value of the SYM-H around that period. During this period, SYM-H recorded it maximum 175 

value of ~70 nT, Vz increased from ~400 km to ~500 km and IMF-Bz also increased from ~5 nT to 176 

~25 nT northward. The gradual decreased in the value of SYM-H up to about -100 nT on 17 March 177 

marked the beginning of the first sub-storm. There is a partial recovery between the first and second 178 

sub-storms. This partial recovery occurred between 09:30 UT – 12:00 UT (Yadav et al. 2016). The 179 

second sub-storm is characterized by long duration of southward orientation with a short-lived 180 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

northward fluctuation in-between before returning back to its normal condition. Again, SYM-H 181 

decreased further until it minimum value is attained, the values of Ap and Kp also increased to a 182 

maximum of 180 and 8 respectively. Although the recovery phase lasted for over 7 days, in this study, 183 

we only examine the effect of this storm activity on the development of ionospheric irregularities 184 

during the main phase (17 March 2015) and a day after (18 March 2015).  185 

 186 

The plots in Figs. 8 - 11 show the variation of ROTI during the disturbed days (17 – 18 March, 2015) 187 

against the monthly average behaviors for the different sectors. We have extended the plots in the 188 

American sector to some hours on the 19 March in order to capture the irregularities during the first 189 

day following the recovery of the storm. The results obtained reveal significant longitudinal 190 

differences in the occurrence of ionospheric irregularities during the disturbed geomagnetic condition. 191 

At the American sector, ionospheric irregularities exhibit wide range of variations such as 192 

enhancement/suppression in the strength of irregularities, shift in the time of its occurrence and a 193 

significant longitudinal variation within the same sector. During the night following the main phase, 194 

the storm appeared not to have hindered the development of irregularities in all the stations in the 195 

American sector. Generally, a slight enhancement in the strength relative to the quiet-time values was 196 

observed in most of the stations as well as a shift in the time of occurrence. It appearance is earlier at 197 

SAVO and BOGT (a double peak structure) and was registered later around the local post-midnight 198 

hours at RIOP. However, the observation during the first night following the recovery of the storm is 199 

quite different. Irregularities were noted at SAVO (long. ~39oW) and KOUG (long. ~53oW) and is 200 

absent at BOGT (long. ~74oW) and RIOP (long. ~79oW). This indicates a significant longitudinal 201 

variation within the American sector. The observation during the main phase of the storm can be partly 202 

attributed to the storm timing. The storm main phase occurred between the local mid-night hours and 203 

the post-sunset period in the American sector. The penetration of electric field around this period may 204 

not have hindered the occurrence but may rather favor it. It is well known that the Rayleigh‐Taylor (R-205 

T) and plasma density instabilities that cause the development of irregularities in the ionosphere are 206 

affected by some external driving forces such as electric fields, the magnetic field and neutral wind (Li 207 

et al., 2011). Due to the uniqueness of the magnetic orientation at the equatorial region, the ionosphere 208 

at the equatorial region is sensitive to any change in electric field. During geomagnetic storms, strong 209 

electric field which originate from the magnetosphere can penetrate down to the low latitudes 210 

(Buonsanto, 1999). An eastward (or westward) electric field during the daytime may favors (or 211 

impedes) the upward drift of plasma. The injection of the eastward electric field during the main phase 212 

may have intensified the normal upward plasma drift and may have favored the development of 213 

irregularities. Increase in the height of the peak height of the F2-layer (hmF2) relative to the reference 214 

quiet day average values were among the different observations reported by Kuai et al. (2016) over the 215 

American sector due to the multiple action of penetration electric fields (PEFs) of the 17 March 2015 216 

storm event. Increase in hmF2 due to PEFs ensures sharper density gradient; a condition that may 217 

favors the development of irregularities. The slight enhancement in the strength of the irregularities 218 

may be an indication that the hmF2 height due to storm-induced electric field is higher than the 219 

reference quiet-time drift.  220 

 221 

On the other hand, the observations during the first night following the recovery of the storm can be 222 

explained in term of the longitudinal differences in the action of storm induced disturbance dynamo 223 

mechanism. Previous investigations of the 17 March 2015 storm event have reported a notable 224 

longitudinal variation in the storm-induced thermospheric wind circulation. Zhang et al. (2015) has 225 

reported a significant poleward surge in thermospheric wind at the mid and subauroral latitudes in the 226 
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American sector following the 17 March storm event. Tulasi Ram et al. [2015] on the hand reported an 227 

equatorward thermospheric wind in the Asian longitudes. The action of poleward wind following this 228 

storm event had been reported by Zhang et al. (2015) to have prevented the equatorward wind in the 229 

American sector with a consequence failure of storm-induced disturbance dynamo mechanism at the 230 

equatorial region. This scenario may favor the occurrence of irregularities in the American sector 231 

depending on the day-to-day variability. However, in longitudes where there is equatorward 232 

thermospheric wind, storm-induced disturbance dynamo mechanism is inevitable and therefore there is 233 

possibility of inhibition of irregularities in the region due to the action of disturbance electric fields. In 234 

this study, irregularities are observed along the meridians ~39oW (SAVO) and ~53oW (KOUG) and 235 

absent long. ~74oW (BOGT) and ~79oW (RIOP) on the first night following the storm’s recovery. This 236 

may suggest that the regional circulation background that may prevent the development of disturbance 237 

dynamo mechanism at the low latitude suggested by Zhang et al. (2015) may not have affected the 238 

entire longitudes in the American sector but rather is confined to some longitudes. Although Hairston 239 

et al. (2016) suggested the possibility of the circulation not reaching the equator earlier, probably in 240 

some longitude. Our observed longitudinal variation within the American sector is similar to what 241 

Rajesh et al. (2017) and Patra et al. (2016) reported over the Asian sector during this storm event. 242 

  243 

The scenario in the African sector is quite different compared to the observations in the American 244 

sector. 245 

The storm activity appeared to have hindered the development of irregularities on both days (i.e. 246 

during the storm’s main phase and the first night following the recovery phase) as observed in Fig 9. 247 

The PEFs, which is injected into the low latitude during the main phase of the storm had occurred 248 

between the local sunrise hour sector and around the post mid-night hour: a time which may not have 249 

favored the occurrence of irregularities in the African sector. The injection of PEFs may have inhibited 250 

the diffusion of plasma that might have caused plasma instability with a consequence failure of 251 

occurrence of irregularities. 252 

 253 

Also, the inhibition of irregularities that was observed on the first night of recovery day (18th March 254 

2015) in the African sector may be an indication of the effect of other storm induced related drivers 255 

whose action may produce a mechanism that may not favor the upward motion of plasma. Such drivers 256 

may include the action of a westward (i) PEFs due to northward orientation of Bz during the recovery 257 

phase and (ii) disturbance dynamo electric field due to storm induced equatorward wind. In this storm 258 

event, the Bz northward orientation associated with the storm recovery is short-lived and it occurred 259 

between the local post-midnight hours and the dawn in African longitude, therefore case (i) may be 260 

ruled out. The inhibition of irregularities in all the stations in the African region may be an evidence of 261 

the disturbance dynamo mechanism on the 18th March 2015 in Africa equatorial region; a development 262 

that is fundamentally similar to some longitudes in the America sector where irregularities is absent on 263 

the first night following the storm recovery. Since irregularities is absent in all the stations during this 264 

period, this may suggest that the action of disturbance dynamo mechanism may not be restricted to 265 

some longitude within the region.  266 

 267 

Further, it can be observed that irregularities are absent at Asian and Oceania longitudes during the two 268 

storm days as shown in Figs. 10 and 11. The weak and irregular structure of irregularities observed at 269 

the Asian sector during the quiet condition, particularly at PBR2, were completely absent during the 270 

two disturbed days. Although, Rajesh et al. (2017) and many other authors that investigated the 271 

ionospheric irregularities dynamics during this storm observed the occurrence of irregularities over the 272 
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Indian region, however, Patra et al. (2016) has reported the confinement of plasma bubbles and 273 

irregularities to a narrow longitude of 69o-98o
 E. This was also confirmed in the investigations this 274 

storm event by Carter et al. (2016) and Rajesh et al. (2017). Rajesh et al. (2017) had found that 275 

irregularities occurred in the Indian longitude and is absent in Taiwan both in the Asian sector. This 276 

may also explain why irregularities are absent at Thailand (CUSV) and Indonesia (BAKO and BTNG). 277 

 278 

On the contrary, PBR2 is a station within the longitudinal range reported by Patra et al. (2016) and no 279 

irregularities was observed during the storm event. Although no plausible explanation can be given, 280 

however, we suggest latitudinal difference in the variation between the station used by Patra et al. 281 

(2016) and PBR2. Patra et al. (2016) had used a station located outside the electrojet belt (Gadanki: 282 

13.5oN, 79.2oE, Mag. lat. 6.5oN), while in this case PBR2 is located at the flank of the electrojet which 283 

could cause a significant variation.  284 

 285 

Conclusion 286 

We have investigated the dynamics of ionospheric irregularities at different sectors during the month 287 

of March 2015. This month consists of a period of both quiet and disturbed ionospheric conditions. We 288 

found that during quiet geomagnetic condition, severe irregularities are prominent only in the 289 

American and African sectors and are rarely observed at the Oceania and Asian sectors. The strength is 290 

however found to decrease eastward. This has been attributed to the eastward decrease in equatorial 291 

electrojet current around the post-sunset period or a westward decrease in counter electrojet current 292 

around the same hours during the period under investigation. Further investigation using observations 293 

from array of magnetometers placed along the different longitudes may help to ascertain which of the 294 

drivers is responsible for the eastward decreases in the strength of irregularities. We also found that the 295 

occurrence of irregularities during the 17 March 2015 storm event differs from one sector to another. 296 

Irregularities are found to be present in all the stations in the American longitude during the night 297 

following the main phase. However, significant longitudinal variation was observed within the sector 298 

during the first night following the storm’s recovery. This development may suggest a notable 299 

longitudinal difference in the effect of storm-induced disturbance dynamo mechanism within the 300 

American sector. We also found that irregularities are absent in all the stations in the African, Asian 301 

and Oceania longitudes during the storm periods. This development is opposite the normal average 302 

quiet day characteristics in African sector: a possibility of suppression or cancellation of normal quiet 303 

day pre-reversal enhancement in the African region owing to the action of storm-induced associated 304 

fields. Also, the observation in the African sector suggests that the effect of the disturbance dynamo 305 

mechanism may not be confined to some longitudes within the region as observed in the American 306 

sector but rather affects the entire longitudes. This investigation also confirms that in studying the 307 

effect of storm activity on occurrence of irregularities, it is essential to consider the effect due to storm 308 

timing and also differentiate between the local, region and global characteristics. 309 

 310 
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Fig. 1:  Map of the world showing the location of the stations used. 

Fig.2: Diurnal plots of the average ROTI values at different stations in the South American 
sector during the period 01-31 March, 2015. 

Fig. 3: Diurnal plots of the average ROTI values at different stations in the African sector during 
the period 01-31 March, 2015. 

Fig. 4: Diurnal plots of the average ROTI values at different stations in the Asian sector during 
the period 01-31 March, 2015. 

Fig. 5: Diurnal plots of the average ROTI values at different stations over the Oceania during the 
period 01-31 March, 2015. 

Fig. 6: The average quiet-time variation of ROTI at all the stations for the month of March, 2015 

Fig. 7: Variability of (a) the interplanetary magnetic field Bz and (b) By components, (c) the 
planetary Ap and (d) Kp indices, (e) the proton density (Np), (f) the solar wind speed, (g) 
the symmetric (SYM-H) and (h) asymmetric (ASYM-H) horizontal components of 
magnetic measurement, (i) the solar wind temperature and (j) the solar wind dynamic 
pressure (P) for the period of 1 – 31 March 2015. 

Fig. 8: Variation of ROTIave in South American sector during the storm days of 17 -19 March, 
2015 and the average quiet-time variation of ROTI for the same month. 

Fig. 9: Variation of ROTIave in the African sector during the storm days of 17 -18 March, 2015 
and the average quiet-time variation of ROTI for the same month. 

Fig.10: Variation of ROTIave in the Asian sector during the storm days of 17 -18 March, 2015 
and the average quiet-time variation of ROTI for the same month. 

Fig.11: Variation of ROTIave in the Oceania sector during the storm days of 17 -18 March, 2015 
and the average quiet-time variation of ROTI for the same month. 
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Table1: Geophysical details of the IGS stations used.    

Location Country Station Geographic Geomagnetic Time (LT) 
    Code Lat. Long. Lat. Long.   

American Sector             
Salvador Brazil SAVO -12.97 -38.50 4.22 110.11 LT = UT - 3 h 
Bogota Colombia BOGT 4.71 -74.07 -3.76 146.60 LT = UT - 5 h 
French Guiana   KOUG 3.93 -53.12 -4.10 124.94 LT = UT - 3 h 
Riobamba Ecuador RIOP -1.66 -78.65 -10.98 149.77 LT = UT - 5 h 

African Sector             
Dakar Senegal DAKR 14.76 -17.36 3.12 -89.08 LT = UT 
Addis Ababa Ethiopia ADIS 8.98 38.75 0.11 110.45 LT UT + 3 h 
Yamoussoukro Coted'ivore YKRO 6.82 -5.28 -2.89 77.26 LT = UT 
Cotonou Benin Rep. BJCO 6.37 2.39 -3.08 74.48 LT = UT 
Malinda Kenya MAL2 -3.21 40.11 -12.66 111.77 LT = UT + 3 h 

Asian Sector             
Patumwan Thailand CUSV 13.74 100.53 5.81 172.10 LT = UT +7 h 
Port Blair India PBR2 11.64 92.71 3.41 164.40 LT = UT +6 h 
Cibinong Indonesia BAKO -6.49 106.85 -1.86 178.28 LT = UT +7 h 
Bitung Indonesia BTNG 1.48 125.19 -6.87 196.41 LT = UT + 8 h 

Oceania Sector             

Kiribati Betio KIRI 1.35 172.92 -2.32 244.39 LT = UT + 12 h 
Tuvalu Funafuti TUVA -7.10 177.64 9.98 250.61 LT = UT + 12 h 
Yaren District Nauru NAUR -0.55 166.53 -4.42 238.61 LT = UT + 11 h 
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Fig. 6: The average quiet-time variation of ROTI at all the stations for the month of March, 2015.    
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Highlights 
� The magnitude of irregularities decreases from eastward for quiet-time condition.  
� Notable longitudinal variations of irregularities during the 17 March 2015 storm. 
� The storm-induced drivers and storm timing play major roles during the storm event. 
 
 


