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Abstract

This paper investigates the plasma irregularittediféerent longitudes in the month of March 20&5;
period that consists of both quiet and disturbeshgggnetic conditions. The average rate of change of
TEC index (ROTJ.o), derived from Global Positioning System (GPS) sueaments obtained at South
America, Africa, Asia and Oceania equatorial regjowas used as indicator. The observations
revealed significant longitudinal differences fastib quiet and disturbed conditions. The quiet-time
observations indicate that irregularities were nfesquent in the American and African sectorssit i
rarely observed in the Asian sector and mostly m@tbge the Oceania longitudes. The strength is
however observed to decrease eastward i.e. it & prominent in the American sector (up to ~1.6
TECU/min.) and absent in the Oceania longitude® fdsults of the investigation of the 17 March,
2015 storm event revealed that the storm appeareth tinder the development of irregularities fin a
the stations in the America sector during the nigiibwing the main phase. However, significant
longitudinal variation is observed within the seata the first night following the storm’s recoveig

the African sector, the storm inhibits the develepimof irregularities in all the stations duringeth
storm days considered: a development that is fuedsaily different from the America sector.
Generally, no significant storm effect is observedhe Asian and Oceania stations considered. The
storm-time longitudinal variations of irregulargidhave been partly attributed to the storm timind a
significant longitudinal difference in the actiohstorm-induced related drivers.

Keywords: Irregularities; ROTI; Scintillation; Geomagnestorm.

1. Introduction

The ionized portion of the earth’s upper atmosplseraetimes becomes unstable and develops plasma
density irregularities. These irregularities in throsphere scatter radio waves in the frequenegaa
of 100 MHz—-4 GHz (Basu et al., 1988; Aarons, 1993rons and Basu, 1994) causing rapid
fluctuation in the intensity and phase of radionsig a process known as ionospheric scintillations.
lonospheric scintillations mainly occur around #gratorial region essentially at night, shortlyeaft
local sunset and are associated with the Rayleagher and F2 layer plasma drift instabilities. The
presence of irregularities in the ionosphere argeVrd to be the primary source of ionospheric
scintillation. lonospheric scintillation degradesris-ionospheric signals, resulting in signal fgdin
below the fad margin of the receiver, and leadmthe signal loss and cycle slips (Kintner et 802,
Tanna and Pathak 2014).

Many observation techniques such as the digisahdezPS, optical imager and many more have been
employed to study the ionospheric irregularitiegdiéfierent regions and report of the investigations
have been documented (e.g. Abdu et al., 1981; HgsdlBurcham, 1998; Su et al., 2008; Lynn et al.,
2011). For examples, the investigations by Wooduash LaHoz (1976), Yeh and Liu (1982), Basu
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and Basu (1985), Muella et al. (2009) and manyrethave shown that the occurrence of irregularities
depends on local time, season, latitude, solaecgot magnetic activity. Basu et al. (1988) regbete
maximum occurrence of scintillation during the higblar activity period. They also found that
irregularities/scintillations were most pronounc@und the equatorial ionization anomaly (EIA); a
region on both sides of the dip equator (about % Where the highest electron content and gradients
are found to exist. Also, Muella et al. (2009) fduthat on geomagnetically disturbed nights,
scintillation activities seemed to be strongly aféel by the penetration of magnetospheric electric
fields.

The occurrence of geomagnetic storm may triggeiouarphysical processes which affect the plasma
dynamics and may alter the background ionosphedgohology. The disturbance may enhance or
impede the evolution of ionospheric irregularitiggrticularly at the equatorial region, with a
consequent effect on scintillations of radio sign&8everal studies had been conducted to examgne th
effect of geomagnetic storm on the occurrence nbdspheric irregularities at different sectors & th
world (e.g. Aarons, 1991; Basu et al., 2001; Biktas$ al., 2004; Chu et al., 2005; Li et al., 2006;
Campos de Rezende et al., 2007; Li et al., 2008¢iPb and Schuler et al., 2012, 2013; Ngwira ¢t al.
2013; Deng et al., 2015). For example, Aarons e(1897) reported a modification in the diurnal
pattern of irregularities during geomagnetic st@went over the American equatorial region. Such
modification in the pattern of ionospheric irregitias was reported by Oladipo and Schuler (2013)
over the African sector. They found that the ocenice of irregularities is affected by the localdiof

the storm’s main phase.

A number of studies has investigated the effe¢chefl7 March, 2015 geomagnetic storm event on the
dynamics of the ionosphere at different locatiogynof which have been reported in special issues i
some journals (e.g. Zhang et al., 2015; Yadav.eR@l6; Rajesh et al., 201Hairston et al., Huang et
al., 2016; Kuai et al., 2016 Lyons et al., 2016pbH et al., 2016; Kil et al., 2016; Patra et al.1@0
Zhou et al., 2016; Spogli et al., 2016; Ray et2017; Borries et al., 2016; Nava et al., 2016 pHani

et al. 2018). Some of the area covered by thes#iestuinclude modeling, observation, data and
assimilation (see Zhang et al. 2017). In all thikections, Kil et al. (2016), Patra et al. (2018hou et

al. (2016), Spogli et al. (2016), Ray et al. (202Ay Rajesh et al. (2017) have investigated the low
latitude ionospheric irregularities at differentétions, mostly in the Asian longitudes. The ainthi$
paper is to investigate the longitudinal variatafnionospheric irregularities during this storm eize
Simultaneous investigation at different longitudewer the same external condition may provide
important information that are still relevant whiamay improve our current understanding on the
physical mechanisms responsible for the developroéntregularities at individual sector. In this
study, we employed GPS data obtained receiverdddcm South American, African, Asian and
Oceania equatorial and low latitude stations. UsiregGPS technology has been considered ideal to
study ionospheric irregularities and has providedn@ans to obtain a general pattern of global
ionospheric irregularities distribution and its iadility.

2. Data and Method of Analysis

Different observation techniques have been usestudy the irregularities in the ionosphere. In this
paper, the ionospheric irregularities during theque01-31 March, 2015, comprising both quiet and
disturbed periods, is investigated using the flagtn index derived from the GPS measurements. The
GPS data are the simultaneous measurements froradéieers located within the equatorial region in
the South American, African, Asian and Oceania@sctThe receivers are all part of International
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GNSS Service (IGS) network of receivers whose measent are archived in Receiver INdependent
EXchange (RINEX) format and are available at ftpodaf.mt.asi.ittGEOD/GPSD/RINEX. Table 1
shows the geophysical detailed of the data sited g the investigation. We have used the GPS-TEC
analysis software developed by Gopi Seemala ofriti@n Institute of Geomagnetism to estimate the
value of TEC from the GPS measurement. In our egiim, an elevation angle cut-off of B@as
adopted in other to eliminate the multipath ef@tthe measurements.

Many researchers have used different fluctuatiolices to represent ionospheric irregularities.his t
study, the Rate of change of the TEC index (RO§F Bmployed. ROTI is a parameter derived from the
time variation of TEC (i.e. rate of change of TERQT) given by equation 1). Pi et al. (1997)
calculated it, based on the standard deviation Off Rver a 5-minute period and is given by the
expression in the equation 2

_ dTEC

ROT =
dt (1)

ROTI = |(ROT?) - (ROT)’ 2

Mendillo et al. (2000), using the expression in &@n 3 computed the average ROTI (RQJI
(ROTlae is @ good proxy that indicate the 30-minutes ptassuation level over a location.) as the
average of ROTI over 30 min interval for a sateliénd then the average over all satellites in view.
This result gives the average level of irregulast{phase fluctuation) for half an hour over tla¢ich.

1 nsat nknk ROTI (n,05h,1)

ROTIave(05h) —TD) S ” o
where n is the satellite number, h is hour (0, 0,5,23.5, 24 UT), i is the 5 min section within fhah
hour (i=1, 2, 3, 4, 5, and 6), nSat (0.5 h) s tlumber of satellites observed within half an hand
k is the number of ROTI values available withinfheth hour for a particular satellite. Adopting the
classification by Oladipo and Schuler (2013), tiadue of ROT}.e> 0.4 TECU/min is considered to
indicate the presence of background ionospheregidarities in this investigation. Oladipo and
Schiler (2013) had earlier categorized the vallig®QT |, as follows: ROT}.e < 0.4 to indicate the
absent of phase fluctuation activity, €.4ROTl,. <0.8 to indicate that there is phase fluctuation
activity, and ROT},. > 0.8 to indicate severe phase fluctuation activity.

3. Results and discussion

3.1 lonospheric irregularities during quiet condition

Figures 2 - 5 show the diurnal plots of the avenage of total electron content index (R@J!index
over South America, Africa, Asia and Oceania regiespectively for all the days in the month of
March, 2015. The figures indicate that irregulastivere largely present in most of the stationereef
during and after the geomagnetic storm days pdatiguin the South American. The frequency of
occurrence is higher at South America and Africaot@s and is less at the other two longitudes
particularly over Oceania. The average behaviortér quietest days of the month was further
analyzed and the results presented in Fig. 6. Elealts of the analysis indicate that ionospheric
irregularities show a significant longitudinal dfence. Irregularities were observed in the South
American and African sectors only and are generalystered between 19:00 LT -00:00 LT in most
of the stations. The magnitude is generally foumdécrease eastward during the quiet condition. In

3
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other words, strength of the irregularities wasnibiio be most severe in the South American sector
(up to about 1.6 TECU/min.), rarely observed in Asgan sector and were absent over the Oceania.

Electric field due to E-region conductivity playsignificant role in plasma dynamic of the equatbri
region. The electric field (E) in conjunction withe magnetic field (which about horizontal at the
equatorial region) produces an E X B electrodynanfarce that affect plasma distribution in the
region. The direction of the force is such thasiupward (or downward) during the day (or night)
when the electric field is eastward (or westwahaaddition, the action of the F-region dynamo dgri
the post-sunset hours enhances the daytime eastleatdc field. This intensifies the upward motion
of plasma during that periods to higher altituddsere the collision frequencies are low and hence
lower recombination rate. The result is enhancerogtite F-region electron density during that perio
(a phenomenon known as pre-reversal enhancemeri)PRRE have been reported to play an
important role in the development of post-sunsebgpheric irregularities (Fejer et al., 1999). The
upward density gradient between the topside F-regiasma lifted by the enhanced E X B force after
sunset and the depleted bottom-side E-region platueato the absence of solar radiation creates
plasma instability which give rise to ionosphenegularities. This may account for the irregulast
observed over South American and African longituaietsveen 19:00 LT -00:00 LT.

Large scale ionospheric irregularities are gendrétem diffusion of plasma from high ionospheric
altitude (Ngwira, et al., 2013). Therefore, the teasd decrease in the strength of ionospheric
irregularities may be an indication that it is eitthe magnitude of daytime eastward equatorial
electrojet (EEJ) current reduces from west to easir the post-sunset hours or there is a daytime
westward electric field (or counter EEJ) imposedtib@ normal daytime eastward field and which
intensifies from east to west. More works may bguned in this direction. Strong EEJ current may
implies strong fountain effect (i.e. strong E X Bagma drift). Strong formation of E X B upward
plasma drift may result into a sharp density gnaidwehich may favor the development of large scale
irregularities.

3.2 lonospheric irregularities during the 17 March, 2055 geomagnetic storm.

The 17 March, 2015 is one of the most intense s&remts in this present solar cycle (solar cycle 24
with SYM-H minimum value of -234 nT as shown in Fi§ The Figure also include from the upper
panel to the bottom: the interplanetary magneteddfi(IMF-B,) and (IMF-B) components, the
planetary Ap and Kp indices, the proton density)(Nipe solar wind speed {) the symmetric (SYM-

H) and asymmetric (ASYM-H) horizontal components rodgnetic measurement, the solar wind
temperature and the dynamic pressure (P) for thedgef 1 — 31 March 2015. The 17 March, 2015 is
characterized by a dramatic enhancement of ringentr(indicated by H-component of the
geomagnetic field) which is a unique feature ofooa mass ejections (CMEs)-driven storms
(Pokhotelov et al., 2009). The storm activity sdrtafter the CMEs that was produced by long
duration C9 solar flare hit the Earth (Borries &t @016). Its arrival generated a storm sudden
commencement (SSC), which occurred on 17 March 20ihits signature is observed by the sudden
increased in value of the SYM-H around that perldring this period, SYM-H recorded it maximum
value of~70 nT, \; increased from-400 km to~500 km and IMF-B also increased from5 nT to
~25 nT northward. The gradual decreased in the vallugYM-H up to about -100 nT on 17 March
marked the beginning of the first sub-storm. Thera partial recovery between the first and second
sub-storms. This partial recovery occurred betw@@30 UT — 12:00 UT (Yadav et al. 2016). The
second sub-storm is characterized by long duratibreouthward orientation with a short-lived
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northward fluctuation in-between before returninack to its normal condition. Again, SYM-H
decreased further until it minimum value is attdinthe values of Ap and Kp also increased to a
maximum of 180 and 8 respectively. Although theoxvery phase lasted for over 7 days, in this study,
we only examine the effect of this storm activity the development of ionospheric irregularities
during the main phase (17 March 2015) and a day éf8 March 2015).

The plots in Figs. 8 - 11 show the variation of R@uiring the disturbed days (17 — 18 March, 2015)
against the monthly average behaviors for the idiffe sectors. We have extended the plots in the
American sector to some hours on the 19 March deroto capture the irregularities during the first
day following the recovery of the storm. The resutibtained reveal significant longitudinal
differences in the occurrence of ionospheric irtegties during the disturbed geomagnetic condition
At the American sector, ionospheric irregularitieghibit wide range of variations such as
enhancement/suppression in the strength of irreial shift in the time of its occurrence and a
significant longitudinal variation within the sarsector. During the night following the main phase,
the storm appeared not to have hindered the dewelopof irregularities in all the stations in the
American sector. Generally, a slight enhancemetiténstrength relative to the quiet-time values was
observed in most of the stations as well as a shithe time of occurrence. It appearance is aaglie
SAVO and BOGT (a double peak structure) and wastergd later around the local post-midnight
hours at RIOP. However, the observation duringfitisé night following the recovery of the storm is
quite different. Irregularities were noted at SA\(long. ~39W) and KOUG (long. ~53V) and is
absent at BOGT (long. ~M/) and RIOP (long. ~7®V). This indicates a significant longitudinal
variation within the American sector. The obsematiluring the main phase of the storm can be partly
attributed to the storm timing. The storm main ghascurred between the local mid-night hours and
the post-sunset period in the American sector. gdreetration of electric field around this periodyma
not have hindered the occurrence but may rather fivit is well known that the Rayleighaylor (R-

T) and plasma density instabilities that causedimelopment of irregularities in the ionosphere are
affected by some external driving forces such astet fields, the magnetic field and neutral wihd

et al., 2011). Due to the uniqueness of the magoeentation at the equatorial region, the ion@sph

at the equatorial region is sensitive to any changdectric field. During geomagnetic storms, sjo
electric field which originate from the magnetosghean penetrate down to the low latitudes
(Buonsanto, 1999). An eastward (or westward) etedteld during the daytime may favors (or
impedes) the upward drift of plasma. The injectdithe eastward electric field during the main ghas
may have intensified the normal upward plasma dnftl may have favored the development of
irregularities. Increase in the height of the pbalght of the F2-layer (hmF2) relative to the refere
quiet day average values were among the differesgrvations reported by Kuai et al. (2016) over the
American sector due to the multiple action of peatein electric fields (PEFs) of the 17 March 2015
storm event. Increase in hmF2 due to PEFs ensh@pes density gradient; a condition that may
favors the development of irregularities. The dlighhancement in the strength of the irregularities
may be an indication that the hmF2 height due twnsinduced electric field is higher than the
reference quiet-time drift.

On the other hand, the observations during the tiight following the recovery of the storm can be
explained in term of the longitudinal differencesthe action of storm induced disturbance dynamo
mechanism. Previous investigations of the 17 Ma2fi5 storm event have reported a notable
longitudinal variation in the storm-induced thermlosric wind circulation. Zhang et al. (2015) has
reported a significant poleward surge in thermospheind at the mid and subauroral latitudes in the
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American sector following the 17 March storm evé@nilasi Ram et al. [2015] on the hand reported an
equatorward thermospheric wind in the Asian lordgl The action of poleward wind following this
storm event had been reported by Zhang et al. (2@1Bave prevented the equatorward wind in the
American sector with a consequence failure of stmhiced disturbance dynamo mechanism at the
equatorial region. This scenario may favor the aemnce of irregularities in the American sector
depending on the day-to-day variability. Howevenm, longitudes where there is equatorward
thermospheric wind, storm-induced disturbance dymamchanism is inevitable and therefore there is
possibility of inhibition of irregularities in theegion due to the action of disturbance electetds. In

this study, irregularities are observed along theidians ~38W (SAVO) and ~53W (KOUG) and
absent long. ~7?4V (BOGT) and ~78V (RIOP) on the first night following the storm'saovery. This
may suggest that the regional circulation backgdatnat may prevent the development of disturbance
dynamo mechanism at the low latitude suggestedhand et al. (2015) may not have affected the
entire longitudes in the American sector but raieezonfined to some longitudes. Although Hairston
et al. (2016) suggested the possibility of thewation not reaching the equator earlier, probably
some longitude. Our observed longitudinal variatwithin the American sector is similar to what
Rajesh et al. (2017) and Patra et al. (2016) redaver the Asian sector during this storm event.

The scenario in the African sector is quite diffédreompared to the observations in the American
sector.

The storm activity appeared to have hindered thesldpment of irregularities on both days (i.e.
during the storm’s main phase and the first nigiibiving the recovery phase) as observed in Fig 9.
The PEFs, which is injected into the low latituderidg the main phase of the storm had occurred
between the local sunrise hour sector and aroumgaist mid-night hour: a time which may not have
favored the occurrence of irregularities in theiédn sector. The injection of PEFs may have inbdbit
the diffusion of plasma that might have caused rpéasnstability with a consequence failure of
occurrence of irregularities.

Also, the inhibition of irregularities that was @pged on the first night of recovery day t(ﬁLBIarch
2015) in the African sector may be an indicatiortief effect of other storm induced related drivers
whose action may produce a mechanism that mayanot the upward motion of plasma. Such drivers
may include the action of a westward (i) PEFs duedrthward orientation of Bz during the recovery
phase and (ii) disturbance dynamo electric field thustorm induced equatorward wind. In this storm
event, the Bz northward orientation associated withstorm recovery is short-lived and it occurred
between the local post-midnight hours and the dewafrican longitude, therefore case (i) may be
ruled out. The inhibition of irregularities in dle stations in the African region may be an eviegeof
the disturbance dynamo mechanism on tH&NI&rch 2015 in Africa equatorial region; a develamn
that is fundamentally similar to some longitudesha America sector where irregularities is abgent
the first night following the storm recovery. Siniceegularities is absent in all the stations dgrihis
period, this may suggest that the action of distode dynamo mechanism may not be restricted to
some longitude within the region.

Further, it can be observed that irregularitiesadorgent at Asian and Oceania longitudes duringvibe
storm days as shown in Figs. 10 and 11. The wedkreggular structure of irregularities observed at
the Asian sector during the quiet condition, patady at PBR2, were completely absent during the
two disturbed days. Although, Rajesh et al. (20a@)l many other authors that investigated the
ionospheric irregularities dynamics during thisrstmbserved the occurrence of irregularities otaer t
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Indian region, however, Patra et al. (2016) haonted the confinement of plasma bubbles and
irregularities to a narrow longitude of €98 E. This was also confirmed in the investigationis th
storm event by Carter et al. (2016) and Rajeshl.e2817). Rajesh et al. (2017) had found that
irregularities occurred in the Indian longitude @adabsent in Taiwan both in the Asian sector. This
may also explain why irregularities are absenttaifand (CUSV) and Indonesia (BAKO and BTNG).

On the contrary, PBR2 is a station within the Itudjinal range reported by Patra et al. (2016) and n
irregularities was observed during the storm evAithough no plausible explanation can be given,
however, we suggest latitudinal difference in tlaiation between the station used by Patra et al.
(2016) and PBR2. Patra et al. (2016) had usedtmrstmcated outside the electrojet belt (Gadanki:
13.5N, 79.2E, Mag. lat. 6.8N), while in this case PBR2 is located at the flafkhe electrojet which
could cause a significant variation.

Conclusion

We have investigated the dynamics of ionospheregularities at different sectors during the month
of March 2015. This month consists of a period athlquiet and disturbed ionospheric conditions. We
found that during quiet geomagnetic condition, severegularities are prominent only in the
American and African sectors and are rarely obskatéhe Oceania and Asian sectors. The strength is
however found to decrease eastward. This has bé&#uted to the eastward decrease in equatorial
electrojet current around the post-sunset period arestward decrease in counter electrojet current
around the same hours during the period under figag®n Further investigation using observations
from array of magnetometers placed along the diffefongitudes may help to ascertain which of the
drivers is responsible for the eastward decreastseistrength of irregularities. We also found tha
occurrence of irregularities during the 17 Marci2@&torm event differs from one sector to another.
Irregularities are found to be present in all th&tisns in the American longitude during the night
following the main phase. However, significant lgndinal variation was observed within the sector
during the first night following the storm’s recaye This development may suggest a notable
longitudinal difference in the effect of storm-irmhd disturbance dynamo mechanism within the
American sector. We also found that irregulariées absent in all the stations in the African, Asia
and Oceania longitudes during the storm periodss @bvelopment is opposite the normal average
quiet day characteristics in African sector: a gobly of suppression or cancellation of normalieju
day pre-reversal enhancement in the African regiwimg to the action of storm-induced associated
fields. Also, the observation in the African secsoiggests that the effect of the disturbance dynamo
mechanism may not be confined to some longitudésirwihe region as observed in the American
sector but rather affects the entire longitudeds Tihvestigation also confirms that in studying the
effect of storm activity on occurrence of irregitias, it is essential to consider the effect dustorm
timing and also differentiate between the locagjor and global characteristics.
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Tablel: Geophysical details of the IGS stationsluse

L ocation Country Station Geographic Geomagnetic Time(LT)
Code Lat. Long. Lat. L ong.

American Sector

Salvador Brazil SAVO -12.97 -3850 4.22 110.11 LT=UT-3h

Bogota Colombia BOGT 4.71 -74.07  -3.76 146.60 LT=UT-5h

French Guiana KOUG 3.93 -53.12 -4.10 12494 LT=UT-3h

Riobamba Ecuador RIOP -1.66 -78.65 -1098 149.77 LT=UT-5h

African Sector

Dakar Senegal DAKR  14.76 -17.36 3.12 -89.08 LT =UT

Addis Ababa Ethiopia ADIS 8.98 38.75 0.11 11045 LTUT+3h

Yamoussoukro Coted'ivore YKRO 6.82 -5.28 -2.89 77.26 LT =UT

Cotonou Benin Rep. BJCO 6.37 2.39 -3.08 74.48 LT =UT

Malinda Kenya MAL2 -3.21 40.11 -12.66 111.77 LT=UT+3h

Asian Sector

Patumwan Thailand CuUsv 13.74 100.53 5.81 17210 LT=UT+7h

Port Blair India PBR2 11.64 92.71 3.41 164.40 LT=UT+6h

Cibinong Indonesia BAKO -6.49 106.85 -1.86 17828 LT=UT+7h

Bitung Indonesia BTNG 1.48 125.19 -6.87 196.41 LT=UT+8h

Oceania Sector

Kiribati Betio KIRI 1.35 17292 -2.32 24439 LT=UT+12h

Tuvalu Funafuti TUVA  -7.10 177.64 9.98 250.61 LT=UT+12h

Yaren District  Nauru NAUR  -0.55 166.53 -4.42 23861 LT=UT+11h
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Highlights

» The magnitude of irregularities decreases from eastward for quiet-time condition.

» Notable longitudinal variations of irregularities during the 17 March 2015 storm.

» The storm-induced drivers and storm timing play major roles during the storm event.



