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VARIATION OF THE FIRST EIGENVALUE OF p-LAPLACIAN ON EVOLVING
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Abstract. Let (M,g) be an n-dimensional compact Riemannian manifold whose metric g(t) evolves by the generalised abstract
geometric flow. This paper discusses the variation formulas, monotonicity and differentiability for the first eigenvalue of the
p-Laplacian on (M,g(t)). It is shown that the first nonzero eigenvalue is monotonically nondecreasing along the flow under
certain geometric conditions and that it is differentiable almost everywhere. These results provide a unified approach to the
study of eigenvalue variations and applications under many geometric flows.
Keywords. Geometric flows; p-Laplacian; Eigenvalues; Monotonicity; Riemannian manifold.
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1. INTRODUCTION

This paper discusses the variation formulas, monotonicity and differentiability for the first eigenvalue
of the p-Laplacian on an n-dimensional closed Riemannian manifold whose metric evolves by a gener-
alised geometric flow.

1.1. Geometric flow. Let (M,g) be an n-dimensional closed Riemannian manifold (n > 1). Let g(x, t)
be a one parameter family of metrics for t ∈ [0,T ] and x ∈ M. We say that g(x, t) is a generalised
geometric flow if it evolves by the following equation

∂

∂ t
g(x, t) =−2h(x, t), (x, t) ∈M× [0,T ] (1.1)
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2 A. ABOLARINWA, O. ADEBIMPE, J. MAO

with g(x,0) = g0(x), where 0 < T < Tε is the maximal time of existence, i.e., Tε is the first time where
the flow blows-up and h is a general time-dependent symmetric 2-tensor. Here h is assumed to be smooth
in both variables t and x. This is obvious since g is also smooth in both variables. The scaling factor
2 in (1.1) is insignificant while the negative sign may be important in some specific applications for the
purpose of keeping the flow either forward or backward in time.

Two popular examples of geometric flows in this category are: the Ricci flow with h being the Ricci
curvature tensor, and the mean curvature flow with h = HΠ (where H is the mean curvature and Π is
the second fundamental form on M). Other examples include Yamabe flow, Ricci-harmonic flow, Ricci-
Bourguignon flow. The appendix of this paper gives details on some examples of geometric flow.

One may impose boundedness condition on tensor h. In fact, such boundedness and sign assumptions
on h are preserved as long as the flow exists, so it follows that the metrics are uniformly equivalent.
Precisely, if −K1g≤ h≤ K2g, where g(t), t ∈ [0,T ] is the flow, then

e−K1T g(0)≤ g(t)≤ eK2T g(0).

To see the last bounds, we consider the evolution of a vector form |X |g = g(X ,X),X ∈ TxM. From (1.1)
and the boundedness of the tensor h, we have |∂tg(X ,X)| ≤ K2g(X ,X), which implies (by integrating
from t1 to t2) ∣∣∣ log

g(t2)(X ,X)

g(t1)(X ,X)

∣∣∣≤ K2t
∣∣∣t2
t1
.

Taking the exponential of this estimate with t1 = 0 and t2 = T yields |g(t)| ≤ ek2T g(0) from which the
uniform boundedness of the metric follows. Thus, if there holds boundedness assumption

−K1g≤ h≤ K2g,

the metric g(t) are uniformly bounded below and above for all time 0≤ t ≤ T under the geometric flow
(1.1). Then, it does not matter what metric we use in the argument that follows.

1.2. Eigenvalue of p-Laplacian. The p-Laplace operator is defined by

∆p,g f (x) := div(|∇ f |p−2
∇ f )(x)

for p ∈ [1,∞), where div is the divergence operator, and the adjoint of gradient (grad) for the L2-norm
induced by g on the space of differential forms. When p = 2, ∆2,g is the usual Laplace-Beltrami operator.
The eigenvalues and the corresponding eigenfunctions of ∆p,g satisfy the following nonlinear eigenvalue
problem

∆p,g f =−λ | f |p−2 f , f 6= 0. (1.2)

It is well known that the principal symbol of (1.2) is nonnegative everywhere and strictly positive at
the neighbourhood of the point where ∇ f 6= 0. We also know that (1.2) has weak solutions with only
partial regularity of class C1,α ,(0 < α < 1) in general. Interested readers can find the classical papers by
Evans [1] and Tolksdorff [2]. Notice that the least eigenvalue of ∆p,g on closed manifold is zero with the
corresponding eigenfunction being a constant. Hence, we refer to the infimum of the positive eigenvalues
as the first nonzero eigenvalue or simply the first eigenvalue. The first eigenvalue of ∆p,g is characterised
by the min-max principle

λp,1 = inf
f

{∫
M |∇ f |pg dµg∫
M | f |

p
g dµg

∣∣∣ f 6= 0, f ∈W 1,p(M)

}
, (1.3)
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satisfying the following constraint
∫

M | f |
p−2
g f dµg = 0, where dµg is the volume measure on (M,g). Ob-

viously, the infimum does not change when one replaces W 1,p(M) by C∞(M). The corresponding eigen-
function is the energy minimizer of Rayleigh quotient (1.3) and satisfies the following Euler-Lagrange
equation

∫
M
[|∇ f |p−2〈∇ f ,∇φ〉−λ | f |p−2〈 f ,φ〉]dµg = 0 (1.4)

for φ ∈C∞
0 (M) in the sense of distribution.

It is well-known that p-Laplacian has discrete eigenvalues but still remains unknown whether it only
has discrete eigenvalues for bounded connected domains. Another well-known results tell us that the first
nonzero eigenvalue is simple and isolated [3, 4]. Here the simplicity shows that any nontrivial eigenfunc-
tion corresponding to λp,1 does not change sign and that any two first eigenfunctions are constant multiple
of each other.

In contrast to the spectrum of the Laplace-Beltrami operator (the case p = 2), the p-Laplacian is non-
linear in general. Moreover, it is not known if λp,1 or its corresponding eigenfunction is C1-differentiable
(or even locally Lipschitz) along any geometric flow of the form (1.1). However, it has been pointed out
that the differentiability for the case p = 2 is a consequence of eigenvalue perturbation theory; see, for
instance, [5, 6] and the references therein. For this reason, any approach (e.g. [7]) that assumes differ-
entiability of eigenvalues and eigenfunctions under the flow can only be applied to the case p = 2. Now
to avoid the differentiability assumption on the first eigenvalue and the corresponding eigenfunction in
the case p 6= 2, we shall apply techniques introduced in [8] (also used in [9, 10, 11]) under the Ricci
flow to study the variation and monotonicity of λp,1(t) = λp,1(t, f (t)), where λp,1(t, f (t)) and f (t) are
assumed to be smooth. The evolution and the monotonicity formulas for the first eigenvalue derived here
do not depend on the evolution of the eigenfunction. The eigenfunction only needs to satisfy certain
normalisation condition.

There are many results on the evolution and monotonicity of eigenvalues of the Laplace operator
on evolving manifolds with or without curvature assumptions. One can find [8, 9, 12, 13, 14] under
the Ricci flow, [9, 15, 16, 17] under Ricci-harmonic flow and [18] along abstract geometric flow with
entropy methods. The study of the properties of eigenvalues of the p-Laplacian on evolving manifold
is still very young. The main aim of this paper is to investigate if those known properties of λp,1 on
static metric and for the case p = 2 on evolving metric can be extended to various geometric flows.
We however intend to develop a unified algorithm that can be used for this purpose on time-dependent
metrics. Many interesting results concerning the behaviour of λp,1 can be found in [3, 4, 19] for static
metrics and [9, 11, 15, 16, 20, 21, 22] for evolving metrics along various geometric flow.

The rest of this paper is planned as follows. Section 2 firstly gives some notations about differential
geometry and analytic tools used in the paper and then state the main results of the paper. We also
state (without proofs) some technical lemmas about variations of some geometric objects relating to the
eigenvalues under the flow (1.1). Section 3 discusses the proofs of the main results of the paper. Finally,
a comprehensive Appendix is added. Here, some examples of geometric flows where the approaches
used in this paper are applicable are listed. In fact, this section reveals that our generalised geometric
flow is not a trivial generalisation.
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2. PRELIMINARIES AND MAIN RESULTS

2.1. Notation. Throughout this paper, M will be taken to be a closed manifold (i.e., compact without
boundary). Most of our calculations are done in local coordinates, where {xi} is fixed in a neighbourhood
of every point x ∈M. We shall adopt Einstein summation convention with repeated indices summed up.
The Riemannian metric g(x) at any point x∈M is a bilinear symmetric positive definite matrix denoted in
local coordinates by gi j(x) = gi jdxidx j. The Riemann structure allows us to define Riemannian volume
measure dµg on M by dµg =

√
|gi j(x)|dxi. By the divergence theorem, we have the following integration

by parts formulas: Let X be a vector field, X = X i∂i and f ∈C∞(M) be smooth function. Then∫
M
〈−divX , f 〉g =

∫
M
〈X ,∇ f 〉g =−

∫
M

1√
detg

f ∂i(X i
√

detg)
√

detg dxi.

Also for functions f ,h ∈C2(M),∫
M

f ∆gh dµ =−
∫

M
〈∇ f ,∇h〉gdµ =

∫
M

∆g f hdµ.

In local coordinates, gradient, Hessian and covariant derivative are written as ∇ f = fi, ∇∇ f = ∇i∇ j f =
fi j and ∂

∂xi = ∂i respectively. Time derivative is written as ∂

∂ t f = ∂t f = ft and then ft, j = ∇( ft). Also
we have the metric norm |∇ f |2g = gi j∇i f ∇ j f = ∇ j f ∇ j f .

2.2. Evolution equations. Interestingly, all the geometric quantities associated with the underlying
manifold evolve as the Riemannian metric evolves along the geometric flow. This also serves as a mo-
tivation considering the behaviours of some other important geometric quantities such as eigenvalues of
the manifold under the flow. The next lemma give us these evolutions.

Lemma 2.1. Suppose a one-parameter family of smooth metrics g(t) solves the geometric flow (1.1).
Then, we have the following evolutions

(1)
∂

∂ t
gi j = 2gikg jlhkl = 2hi j

(2)
∂

∂ t
dµ =−H dµ.

(3)
∂

∂ t
|∇ f |p = p|∇ f |p−2

{
hi j∇i f ∇ j f +gi j

∇i f ∇ j ft
}

(4)
∂

∂ t
|∇ f |p−2 = (p−2)|∇ f |p−4

{
hi j∇i f ∇ j f +gi j

∇i f ∇ j ft
}

(5)
∂

∂ t
(∆p,g f ) = 2hi j

∇i(Z∇ j f )+gi j
∇i(Zt∇ j f )+gi j

∇i(Z∇ j ft)

+Z
{

2〈 div h,∇ f 〉−〈∇H ,∇ f 〉+∆ ft
}
,

where H = gi jhi j, the metric trace of a symmetric 2-tensor hi j, div is the divergence operator i.e.
(divh)k = gi j∇ih jk , Z := |∇ f |p−2 and f is a smooth function defined on M.

The proof follows standard computation as in [9, Lemma 2.2], see [10, Lemmas 2.1 and 2.2] for the
proof.
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2.3. Main Results. Recall that we already mentioned that sign assumption on tensor hi j is preserved
throughout the flow. To prove the monotonicity of λp,1, we will need the condition

(hi j−αH gi j)(x, t)≥ 0, ∀t ∈ [0,T ].

This condition is informed by the Hamilton’s maximum principle for tensors. For clarity we state the
principle without proof.

Definition 2.2. (Null-eigenvector assumption [23]) A quantity Q(q, t) : Sym2T ∗M× [0,T ]→ Sym2T ∗M
is said to satisfy the null eigenvector assumption if whenever ωi j is a nonnegative symetric (0,2)-tensor
at a point q and if X ∈ TqM is such that ωi jX j = 0 and then

Qi j(ω,g)X iX j ≥ 0

for any t ∈ [0,T ).

The symetric tensor ωi j is defined to be nonnegative if and only if ωi jV iV j ≥ 0 for all vectors V i (i.e.,
the quadratic form induced by ωi j is semi-positive definite) and we write ωi j ≥ 0.

Theorem 2.3. ([24, Theorem 9.1], [23, Theorem 4.6]) Let g(t) be a smooth one parameter family of
Riemannian metrics satisfying (1.1). Let Mi j be a symmetric (0,2)-tensor satisfying

∂

∂ t
Mi j(x, t)≥ ∆Mi j(x, t)+ 〈X ,∇Mi j〉+Q(Mi j,g(t)), (2.1)

where X is a time-dependent vector field and Q(Mi j,g(t)) is a symmetric (0,2)-tensor which is locally
Lipschitz in x, continuous in t and satisfies the null-eigenvector assumption. If Mi j(p,0) ≥ 0 for all
p ∈M, then Mi j(p, t)≥ 0 for all p ∈M and t ∈ [0,Tε)

This theorem is a version of the maximum principle for tensors, which was originally applied to the
evolution of Ricci tensor under the 3-dimensional Ricci flow. In general. the condition of nonnegativity
of the Ricci curvature tensor is not preserved under the Ricci flow for the dimension greater than 3.
However, by the above maximum principle for tensors we can prove the following proposition.

Proposition 2.4. Let g(t) be a smooth one parameter family of Riemannian metrics satisfying (1.1). If

(hi j−αH gi j)(x,0)≥ 0,

then

(hi j−αH gi j)(x, t)≥ 0 (2.2)

for some α ∈ [0, 1
n ] and all t ∈ [0,T ).

The proof of this proposition follows directly from the proof of [24, Theorem 9.4] (see also [21,
Lemma 4.3]) by applying Theorem 2.3 with Mi j = hi j −αH gi j. Hence, we omit it here. The only
technicality involved is to get the time evolution of (0,2)-tensor hi j under the flow (1.1).

The main results can now be stated, whereas the proofs will be discussed in Section 3.

Theorem 2.5. Let (M,g) be an n-dimensional closed Riemannian manifold evolving by geometric flow
(1.1). Let λp,1(t) be the first eigenvalue of the p-Laplacian on M corresponding to the eigenfunction
u(t,x) at time t ∈ [0,T ]. Then

d
dt

λp,1(t) = λp,1(t)
∫

M
H |u|pdµ−

∫
M

H |∇u|pdµ + p
∫

M
|∇u|p−2hi j

∇iu∇ judµ (2.3)
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for all time t ∈ [0,T ]. Moreover, if

hi j−αH gi j ≥ 0, α ∈ [1/p,1/n), (2.4)

then
d
dt

λp,1(t)≥ λp,1(t)
∫

M
H |u|pdµ +(α p−1)

∫
M

H |∇u|pdµ ≥ 0 (2.5)

provided H is nonnegative.

Corollary 2.6. Under the same assumptions of Theorem 2.5.

λp,1(t2)≥ λp,1(t1)+
∫ t2

t1
Θ(g(t),u(t))dt, (2.6)

where

Θ(g(t),u(t)) = λp,1(t)
∫

M
H |u|pdµ +(α p−1)

∫
M

H |∇u|pdµ

for t1, t2 ∈ [0,T ],T < ∞. Furthermore, if H ≥Hmin ≥ 0, then, ∀t1 < t2,

λp,1(t2)≥ λp,1(t1)exp
{

α p
∫ t2

t1
Hmin(t)dt

}
(2.7)

and λp,1(t) is monotonically nondecreasing along flow.

Finally, we obtain a monotonic quantity involving λp,1(t) and then show that λp,1(t) is differentiable
almost everywhere along the geometric flow.

Theorem 2.7. Under the same assumptions of Theorem 2.5, if instead H ≥Hmin(0) 6= 0 (i.e., either

Hmin(0)> 0 or Hmin(0)< 0), then the following quantity λp,1(t) ·
(
Hmin(0)−1− 2

n
t
) αnp

2
is monotonically

nondecreasing and λp,1(t) is differentiable almost everywhere along the geometric flow (1.1).

3. VARIATION AND MONOTONICITY FORMULAS

Now consider the eigenvalue problem

∆p,gu =−λ |u|p−2u, u 6= 0 on M× [0,T ] (3.1)

with the normalisation condition
∫

M |u|p dµ = 1. We want to derive general evolution for the eigenvalues
of ∆p,g and show that λp,1 is monotone on metrics evolving by the geometric flow. In order to do these, we
need to calculate time evolution for λp,1 and its corresponding eigenfunction. To avoid differentiability
assumption on λp,1 or its corresponding eigenfunction along the flow, we apply some techniques similar
to the one in [8] as discussed above. Precisely, let (M,g(t)), t ∈ [0,T ] be a smooth closed Riemannian
manifold evolving by the flow (1.1). Define a general smooth function as follows

λp,1(u(t), t) :=−
∫

M
u(t)∆pu(t)dµg(t) =

∫
M
|∇u(t)|pdµg(t), (3.2)

where u(t) is a smooth function satisfying the normalisation condition∫
M
|u(t)|pdµg(t) = 1 and

∫
M
|u(t)|p−2u(t)dµg(t) = 0. (3.3)
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By this we claim that there exists a smooth function u(s) at time t = s ∈ [0,T ] satisfying (3.3). To
see this claim, we first assume that, at time t = s, u(s) is the eigenfunction corresponding to λp,1(s) of
∆p.g(s), which implies

∫
M
|u(s)|pdµg(s) = 1 and

∫
M
|u(s)|p−2u(s)dµg(s) = 0.

Then we consider the following smooth function

f (t) = u(s)

(
|g(s)|
|g(t)|

) 1
2(p−2)

(3.4)

under the flow g(t). We normalize this smooth function

u(t) =
f (t)(∫

M | f (t)|pdµg(t)

) 1
p

(3.5)

under the flow g(t). By (3.5), we can easily check that u(t) satisfies (3.3). In general, λp,1(u, t) is not
equal to λp,1(t). But at time t = s, if u(s) is the eigenfunction of the first eigenvalue λp,1(s), then

λp,1(u(s),s) = λp,1(s)

and

d
dt

λp,1(u(t), t) =
d
dt

λp,1(t)

at some time t = s. Notice that the normalisation condition implies

∂

∂ t

(∫
M
|u|pdµ

)∣∣∣
t=s

= 0, (3.6)

which by direct computation (at t = s) yields the following

∫
M
|u|p−2u

(
(p−1)

∂u
∂ t

dµ +
∂

∂ t
(udµ)

)
= 0. (3.7)

We are now set to prove a theorem about the evolution, monotonicity and differentiability (Theorem
2.5) of the first eigenvalue of the p-Laplacian under the geometric flow. Clearly, we can now set

λp,1(t) = λp,1(u(t), t) =−
∫

M
u(t,x)∆pu(t,x)dµg(t). (3.8)

The evolution of λp,1 then follows

d
dt

λp,1(t) =
∂

∂ t
λp,1(u(t), t)

∣∣∣
t=s

=− ∂

∂ t

∫
M

u(t,x)∆pu(t,x)dµg(t). (3.9)

Proof of Theorem 2.5.
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Proof. The proof also follows by direct computation using evolution of quantities in Lemma 2.1. Denote
Z := |∇u|p−2. It follows that

∂

∂ t

∫
M

u∆pudµ =
∂

∂ t

∫
M

gi j
∇i[Z∇ ju]udµ

=
∂

∂ t

∫
M

(
gi j

∇iZ∇ ju+Z∆u
)

udµ

=
∫

M

∂

∂ t

(
gi j

∇iZ∇ ju+Z∆u
)

udµ +
∫

M
∆pu

∂

∂ t
(udµ)

=: I + II.

By the evolution of ∆p,g in Lemma 2.1, we have

I =
∫

M
2hi j

∇i(Z∇ ju)+gi j
∇i(Zt∇ ju)+gi j

∇i(Z∇ jut)+
∫

M
Z
{

2〈 div h,∇u〉−〈∇H ,∇u〉
}

udµ.

Using integration by parts on the second and third terms of the last integral, we have

I =
∫

M
2hi j

∇i(Z∇ ju)−
∫

M
gi jZt∇iu∇ ju−

∫
M

Zgi j
∇iu∇ jut)+

∫
M

Z
{

2〈 div h,∇u〉−〈∇H ,∇u〉
}

udµ.

Therefore we have after using the evolution Zt from Lemma 2.1 that

∂

∂ t

∫
M

u∆pudµ =
∫

M
2hi j

∇i(Z∇ ju)udµ− (p−2)
∫

M
|∇u|p−2hi j

∇iu∇ judµ

−(p−1)
∫

M
|∇u|p−1gi j

∇iu∇ jutdµ

+
∫

M
Z
{

2〈 div h,∇u〉−〈∇H ,∇u〉
}

udµ

+
∫

M
∆pu

∂

∂ t
(udµ).

(3.10)

Computing the first and the third terms on the right hand side of (3.10) as follows∫
M

2hi j
∇i(Z∇ ju)udµ =−2

∫
M

∇i(hi ju)Z∇ juudµ

=−2
∫

M
|∇u|p−2hi j

∇iu∇ judµ−2
∫

M
Z〈divh,∇u〉udµ.

−(p−1)
∫

M
|∇u|p−1gi j

∇iu∇ jutdµ = (p−1)
∫

M
gi j

∇i(|∇u|p−1
∇iu)ut

= (p−1)
∫

M
∆puutdµ

Putting these back into (3.10), we have

∂

∂ t

∫
M

u∆pudµ =−p
∫

M
|∇u|p−2hi j

∇iu∇ judµ−
∫

M
Z〈∇H ,∇u〉udµ

+(p−1)
∫

M
∆pu utdµ +

∫
M

∆pu
∂

∂ t
(udµ).

Using the normalisation condition (3.7) and the definition of ∆pu in (3.1), the last two terms on the RHS
of the above equation vanish and we then arrive at

∂

∂ t

∫
M

u∆pudµ =−p
∫

M
|∇u|p−2hi j

∇iu∇ judµ−
∫

M
Z〈∇H ,∇u〉udµ. (3.11)
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The next is to compute the second term on the RHS of the last equality using integration by parts as
follows

−
∫

M
Z〈∇H ,∇u〉udµ =

∫
M

H ∇i(Z∇ ju u)dµ

=
∫

M
H ∇i(Z∇ ju)udµ +

∫
M

H Z∇iu∇ judµ

=
∫

M
H ∆pu udµ +

∫
M

H |∇u|p−2|∇u|2dµ

=−λp,1(t)
∫

M
H |u|pdµ +

∫
M

H |∇u|pdµ.

Putting this into (3.11), we obtain (2.3) at once. Hence, the first part of the theorem is proved. Using the
condition (2.4) in (2.3), we have the monotonicity formula (2.5) with the condition H ≥ 0. �

Remark 3.1. Clearly, when p = 2, we have ∆2 = ∆g, the usual Laplace-Beltrami operator. Also λp,1 =

λ1, the first eigenvalue of ∆g and the corresponding eigenfunction are smoothly differentiable. Then,
Theorem [10, Theorem 2.6] reduces to a corollary. This further explains that the p-Laplacian is a non-
linear generalisation of Laplace-Beltrami operator. Integrating both sides of (2.5) from t1 to t2 on a
sufficiently small time interval t1 ≤ t ≤ t2, t ∈ [0,T ], we then obtain 2.6.

Proof of Corollary 2.6. Using (2.5) we have

d
dt

λp,1(t)≥Θ(g(t),u(t)), (3.12)

where
Θ(g(t),u(t)) = λp,1(t)

∫
M

H |u|pdµ +(α p−1)
∫

M
H |∇u|pdµ.

Integrating (3.12) from t1 to t2, t1, t2 ∈ [0,T ],T < ∞ yields

λp,1(t2)−λp,1(t1)≥
∫ t2

t1
Θ(g(t),u(t))dt.

Now, let H ≥Hmin. By the definition of λp,1 in (1.3) and the normalisation condition
∫

M |u|pdµ = 1,
we know that λp,1 =

∫
M |∇u|pdµ Hence (2.5) is reduced to

d
dt

λp,1(t)≥ α pHmin(t)λp,1(t) (3.13)

from which (2.7) follows by integrating on the interval [t1, t2] with t1, t2 ∈ [0,T ]. This implies that λp,1(t)
is monotonically nondecreasing in the interval [t1, t2]. �

Proof of Theorem 2.7. Note that both λ1(t) and Hmin(t) are functions of time only. Setting Hmin(0)=ψ0,

we can evaluate (See (4.5) in the Appendix)∫ t2

t1
Hmin(t)dt =

∫ t2

t1

( 1
ψ
−1
0 −

2
n t

)
dt

=−n
2

log(ψ−1
0 −

2
n

t)
∣∣∣t2
t1
= log

(
ψ
−1
0 −

2
n t1

ψ
−1
0 −

2
n t2

) n
2

.

Therefore integrating both sides of (3.13) from t1 to t2 and together with the above equality yields that

log
λp,1(t2)
λp,1(t1)

≥ log

(
ψ
−1
0 −

2
n t1

ψ
−1
0 −

2
n t2

) αnp
2

(3.14)
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for any time t1 < t2 sufficiently close to t2. Hence,

λp,1(t2) ·
(

ψ
−1
0 −

2
n

t2
) αnp

2 ≥ λp,1(t1) ·
(

ψ
−1
0 −

2
n

t1
) αnp

2
,

which means that the quantity λp,1(t) · (ψ−1
0 −

2
n t)

αnp
2 in the interval [t1, t2] along the geometric flow.

Notice that (ψ−1
0 −

2
n t) is decreasing in the interval t1 < t2, t1, t2 ∈ [0,T ). This means that λp,1(t) is

nondecreasing along the flow. �

The differentiability of λp,1(t). Since λp,1(t) is nondecreasing on the time interval [0,T ) (under curva-
ture assumption of the theorem), by the classical Lebesgue’s theorem [25, Chapter 4] , it is easy to see
that λp,1(t) is differentiable almost everywhere.

Remark 3.2. The proofs of the first eigenvalue variation and monotonicity do not use any differentiabil-
ity of the first eigenvalue λp,1(t) or its corresponding eigenfunction u(t,x) of the p-Laplacian under the
flow. In fact, it is not known whether they are differentiable in advance. It would be interesting to find
out whether the corresponding first eigenfunction of the p-Laplacian is a C1-differentiable function with
respect to t-variable along the flow.

4. APPENDIX

A. Geomtric flow. The monotonicity of λp,1(t) depends on the sign of H . Note that in applications the
sign of H is usually preserved throughout the evolution. An interesting case is when the manifold is
being evolved under the Ricci flow [24], where the nonnegativity of scalar curvature is preserved. Notice
also that H evolves by

∂

∂ t
H = β +2|hi j|2,

where β := gi j∂thi j. In particular, under Ricci flow where hi j = Ri j and H = R, we have β = ∆R. Here
we will assume that

β −∆H ≥ 0. (4.1)

This is motivated by an error term appearing in a result of Müller [26, Lemma 1.6]. For our case the
error term reads; for any time-dependent vector field X on M

D(X) := 2(Ri j−hi j)(X ,X)+2〈2div h−∇H ,X〉+∂tH −∆H −2|hi j|2, (4.2)

where Ri j is the Ricci curvature tensor of M. Clearly the last three terms in (4.2) above is the same as
the quantity β −∆H . It does make sense to assume (4.1) holds whenever D(X) is nonnegative. An
application of this is that the flow is a steady or shrinking soliton (self-similar solution to the geometric
flow) if the equality in (4.1) holds. Writing |hi j|2 ≥ 1

nH 2 and using the condition that β −∆H ≥ 0, we
have that a governing differential inequality for the evolution of H follows

∂

∂ t
H ≥ ∆H +

2
n
H 2. (4.3)

Supposing H ≥Hmin, we can apply the maximum principle by comparing the solution of (4.3) with
that of the following ordinary differential equation

dψ(t)
dt

=
2
n
(ψ(t))2,

ψ(0) = Hmin(0).
(4.4)
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Therefore

Hg(t) ≥ ψ(t) =
Hmin(0)

1− 2
nHmin(0)t

(4.5)

for all t ≥ 0 as long as the flow exists.

B. Examples of geometric flows. In this section, we give some examples of geometric flows where
our results are valid. We remark that in these cases the error term D(X) and the quantity β −∆H are
nonnegative. More examples can be found in [26, Section 2].

B.1. Hamilton’s Ricci flow [24]. Let (M,g(t)) be a solution to the Hamilton’s Ricci flow

∂tgi j(t,x) =−2Ri j. (4.6)

This is the case where hi j = Ri j is the Ricci tensor and H = R is the scalar curvature on M. Here, the
scalar curvature evolves by

∂tR = ∆R+2|Ri j|2.

By twice contracted second Bianchi identity gi j∇iR jk =
1
2 ∇kR, which implies

2〈 div h,∇ f 〉−〈∇H ,∇ f 〉= 0,

the quantity D(X) vanishes identically and β −∆R≡ 0. Note that the positivity of curvature is preserved
along the Ricci flow [24]. The evolution equation and monotonicity formula for the first eigenvalue
follow easily (see [8, 12, 27] and [7, 13, 14]). A fundamental result here is Perelman’s paper [28], where
he defines his F -energy

F (gi j(t),u(t)) =
∫

M
(4|∇u|2 +Ru2)dµ with

∫
M

u2dµ = 1. (4.7)

and proved that it is monotonically nondecreasing. He also defined

λ1(gi j) = inf
{
F (gi j, f ) : f ∈C∞

c (M),
∫

M
e− f dµ = 1

}
, (4.8)

with λ1(gi j) (being the least eigenvalue of the geometric operator−4∆+R) and its corresponding eigen-
function u = e− f satisfying the eigenvalue problem

−4∆u+Ru = λ1(gi j)u.

He showed that monotonicity of λ1(gi j) follows from that of F .

B.2 Ricci harmonic flow [29]. Let (M,g) and (N,ξ ) be compact (without boundary) Riemannian mani-
folds of dimensions m and n respectively. Let a smooth map ϕ : M→N be a critical point of the Dirichlet
energy integral E(ϕ) =

∫
M |∇ϕ|2dµg, where N is isometrically embedded in Rd , d ≥ n, by the Nash em-

bedding theorem. The configuration (g(x, t),ϕ(x, t)), t ∈ [0,T ) of a one parameter family of Riemannian
metrics g(x, t) and a family of smooth maps ϕ(x, t) is defined to be Ricci-harmonic map flow if it satisfies
the coupled system of nonlinear parabolic equations

∂

∂ t
g(x, t) =−2Rc(x, t)+2α∇ϕ(x, t)⊗∇ϕ(x, t),

∂

∂ t
ϕ(x, t) = τgϕ(x, t),

(4.9)
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where Rc(x, t) is the Ricci curvature tensor for the metric g, α(t)≡ α > 0 is a time-dependent coupling
constant, τgϕ is the intrinsic Laplacian of ϕ , which denotes the tension field of map ϕ and ∇ϕ⊗∇ϕ =

ϕ∗ξ is the pullback of the metric ξ on N via the map ϕ . Here hi j = Ri j −α∂iϕ∂ jϕ =: Si j, H =

R−α|∇ϕ|2 =: S and
∂tS = ∆S+2|Si j|2 +2α|τgϕ|2−2α̇|∇ϕ|2. (4.10)

Using the twice contracted second Bianchi identity, we have

(gi j
∇iS jk−

1
2

∇kS)X j =−ατgϕ∇ jϕX j. (4.11)

A straightforward computation gives

2(Rc−S )(∇u,∇u) = 2α|∇ϕ|2|∇u|2. (4.12)

Then,
D(X) = 2α|τgϕ−〈∇ϕ,X〉|2−2α̇|∇ϕ|2 and β −∆S = 2α|τgϕ|2− α̇|∇ϕ|2

for all X on M. Thus, both D and β −∆S are nonnegative as long as α(t) is nonincreasing in time.
The first author has considered this in [9]. See also [17] for the monotonicity of the first eigenvalue of
Laplace-Betrami operator and versions of Perelman’s entropy under the Ricci-harmonic map flow.

B.3. Lorentzian mean curvature flow. Let Mn(t) ⊂ Ln+1 be a family of space-like hypersurfaces in
ambient Lorentzian manifold evolving by Lorentzian mean curvature flow

∂tF(t, ·) = Π(t, ·)ν(t, ·)

for (t, ·) ∈ [0,T ]×M, where F(t, ·) is the position of Mn in Ln+1 satisfying F(0, ·) = F0(·). Here ν(t, ·)
and Π(t, ·) are respectively the outer normal vector and mean curvature at the point F(t, ·). Then, the
induced metric evolves by

∂tgi j = 2HΠi j,

where Πi j denotes the components of the second fundamental form Π on M and H = gi jΠi j denotes the
mean curvature of M. In this case hi j =−HΠi j and H =−H2. Letting R̃c and R̃m denote the Ricci and
Riemman curvature tensor of Ln+1 respectively, we have the Gauss equation

Ri j = R̃i j−HΠi j +ΠilΠl j + R̃i0 j0,

the Codazzzi equation
∇iΠ jk−∇kΠi j = R̃0 jki,

the evolution equation
∂tH = ∆H−H(|Π|2 + R̃c(ν ,ν)

and
β −∆H = 2H2|Π|2 + |∇H|2 +2HR̃c(ν ,ν).

See the explicit forms of the Gauss and the Codazzi equations for Ln+1 = Rn+1 in [30]. Combining the
above equation we obtain the quantity

D(X) = 2|∇H−Π(X , ·)|2 +2R̃c(Hν−X ,Hν−X)+2〈R̃m(X ,ν)ν ,X〉, (4.13)

where ν denotes future-oriented timelike unit normal vector on M. Obviously both D(X) and β−∆H are
nonnegative when assuming nonnegativity on sectional curvature of Ln+1. See [22] for the evolution and
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monotonicity of the first eigenvalue of p-Laplace operator under the mth powers of the mean curvature
flow. See also Huisken [30], the last author’s paper [21] and [20, 22] for related results.

B.4. The Yamabe flow. This is the case when hi j =
1
2 Rgi j, where R is the scalar curvature of the metric.

Yamabe flow is then the following evolution equation

∂

∂ t
gi j(x, t) =−R(x, t)gi j(x, t), (x, t) ∈M× [0,T ],

gi j(x,0) = g0(x)

(4.14)

as introduced by Hamilton who first established the existence of its unique solution for all time and shows
that the metric g(t) approaches constant as t→ ∞. His proof was done for volume preserving flow

∂

∂ t
gi j(x, t) = (r(t)−R(x, t))gi j(x, t), (x, t) ∈M× [0,∞), (4.15)

with r(t) = Vol−1(g(t))
∫

M Rdµ is the average of scalar curvature for the metric in a conformal class.
For more on the global existence and convergence of (4.14) see Chow [31] and Ye [32]. Note that
under the Yamabe flow the volume measure evolves as ∂tdµ = n/2Rdµ and the normalization condition,
∂t(
∫

M |u|pdµ) = 0, implies ∫
M

p|u|puutdµ− n
2

∫
M

Rudµ = 0.

Here, the evolution of scalar curvature was given [31] as

∂

∂ t
R = (n−1)∆R+R2 (4.16)

and by the strong maximum principle

R(x, t)≥ ψ(t) =
Rmin(0)

1−Rmin(0)t

for all t. We can also compute

〈2div h−∇H ,∇ f 〉= 〈2gi j
∇i(

1
2

Rgi j)−
n
2

∇kR,∇ f 〉

=
n
2
〈∇R,∇ f 〉

and

β −∆H =
n(n−2)

2
∆R.

These imply that the quantitty D(∇ f ) is nonnegative on the Einstein tensor

Ei j = Ri j−
1
2

Rgi j ≥ 0.

Hence, the main results of this paper hold for Yamabe flow. Using the assumptions that p≥ n and R≥ 0,
the author in [11, Section 7] proved that λp,1 is strictly increasing and differentiable almost everywhere
along the Yamabe flow. Yamabe flow coincides with the Ricci flow on Riemann surfaces.
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