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This paper presents the effects of AB-flux field and electric field on electron-electron interaction,
encircled by a strongly coupled semiclassical plasma. We found that weak external fields are required
to perpetuate a low-energy elastic electron-electron interaction in a strongly coupled semiclassical
plasma. The entanglement fidelity in the interaction process has been examined. We have used
partial wave analysis to derive the entanglement fidelity. We found that for a weak electric field,
the fidelity ratio for electron-electron interaction increase as projectile energy increase but remains
constant or almost zero for a strong electric field. Our results provide an invaluable information on
how the efficiency of entanglement fidelity for a low-energy elastic electron-electron interaction in a
strongly coupled semiclassical plasma can be influenced by the presence of external fields.
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I. INTRODUCTION

There has been a ceaseless interest ([1–3] and Refs.
therein) in studying electron-ion and electron-electron
interaction process in plasmas environment due to its
application in diagnosing various plasma and also pro-
viding passable knowledge on collision dynamics. It was
shown in Ref. [3] that the optically allowed but 1s-2s
cross section is less sensitive to the plasma effect but 1s-
2p and 2s-2p cross sections for electron impact excitation
are substantially reduced by the plasma screening. The
effect of the carrier reservoir dimensionality on electron-
electron scattering in quantum dot materials was inves-
tigated in Ref. [4]. It was found that 3D scattering ben-
efits from its additional degree of freedom in the momen-
tum space. Jung [5] studied quantum-mechanical effects
on electron-electron scattering in dense high-temperature
plasmas. Suppression of inelastic electron-electron scat-
tering in Anderson insulators was explored by Ovadyahu
[6].

The study of entanglement has been a subject of ac-
tive research in physics, chemistry and related areas.
Quantum entanglement lies in the heart of quantum me-
chanics ([7–9] and refs. therein). Entanglement has be-
come very useful in information processing and quan-
tum communication. Really, it plays a crucial role in
potential realization of quantum computers. It also rep-
resent a quantitative measure for electron-electron cor-
relation in many body system. A very useful tool to
distinguish between two quantum states (say ρ1 and
ρ2) is known as the fidelity between ρ1 and ρ2, i.e.,

∗Electronic address: babatunde.falaye@gmail.com

F (ρ1, ρ2) :=Max| 〈φ1 | φ2〉 |, where |φ1〉 and |φ2〉 corre-
spond to the state of ρ1 and ρ2.
The interest in studying entanglement fidelity in the

electron-electron scattering process has received a consid-
erable attention in the last few years. This is due to the
key role that quantum correlation plays in understanding
information processing. The entanglement in scattering
processes was investigated by Mishima et al. [12]. It
has been found that, a low energy elastic scattering is
desirable for entanglement enhancement. The quantum
effect on the entanglement fidelity in elastic electron-ion
scattering was investigated under strongly coupled semi-
classical plasmas in Ref. [13]. It was shown that the
quantum effect significantly augments the entanglement
fidelity in a strongly coupled semiclassical plasmas. In
the present work, we study the conditions to obtain a low-
energy elastic electron-electron scattering by taking into
account the effect of electric field, AB-flux field and uni-
form magnetic field directed along z-axis and surrounded
by strongly coupled semiclassical plasmas. Once the con-
ditions to obtain a low energy level are established, then
entanglement fidelity will be examined.

II. THEORY AND CALCULATIONS

The Debye-Hückel model which provides a modern
treatment of non-ideality in plasma via the screen-
ing effect is given by χ(r) = ZaZb/r exp(−r/λD),
where λD represent Debye length given by λD =√

kβT/4πe2
∑

i niZ2
i with Za and Zb being the a− b in-

teraction (here, a = b = e) . This model accounts for pair
correlations. However, besides correlation, the quantum
mechanical effects of diffraction also take place in semi
classical plasma. Hence, the effective model which ac-
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counts for both screening and diffraction in strongly cou-
pled semiclassical plasmas can be written as [14]:

χ(r) = −
ZaZbe

2

√

1− 4
λ2
ab

λ2
D

[

B2(λab, λD)
exp[−A(λab, λD)r]

r

−A2(λab, λD)
exp[−B(λab, λD)r]

r

]

, (1)

where A and B are quantum screening parame-

ters given by A2 ≡
(

1−
√

1− 4λ2ab/λ
2
D

)

/2, B2 ≡

(

1 +
√

1− 4λ2ab/λ
2
D

)

/2 and the de Broglie thermal

wavelength is denoted by λab.

On this foundation, we can build the model equation
for electron-electron interaction under the influence of
electric field, AB-flux field and uniform magnetic field
directed along z-axis and surrounded by strongly coupled
semiclassical plasmas, in spherical polar coordinates as:












−~
2

2µ
∇2 −

(Zee)
2

√

1− 4
λ2
ee

λ2
D

[

B2 e
−A(λee,λD)r

r
−A2 e

−B(λee,λD)r

r

]

︸ ︷︷ ︸

screened effective pseudopotential model

−Fr cos(θ)












ψ(r, θ) = Enmψ(r, θ), (2)

where E denotes the eigenvalues, µ is the effective mass

of an electron, vector potential ~A = φAB

2πr φ̂ represents the
magnetic flux φAB created by a solenoid inserted inside

the antidot with ~∇ × ~A = 0. λD is the screening pa-
rameter. Z denotes the atomic number which is found
useful in describing energy levels of light to heavy neu-
tral atoms. The thermal de Broglie wavelength of the
electron-electron pair is denoted by λee = ~/

√
πµkβTe

where Te is the temperature of the plasma electrons,
Planck constant is denoted as ~ and kβ is the Boltz-
mann constant. Moreover, the characteristic properties
of the plasma are denoted by the coupling parameter
αkβTeΓee = (Ze)2 (where α is the average distance be-

tween particles). λD =
√

KβTe/4πnee2 is the Debye
radius where the electron density is denoted by ne. The

ranges of electron density and temperature, Te are known
as 1020− 1024cm−3 and 5× 104− 106K, respectively in
dense classical plasma.

Furthermore, F represents electric field strength with
angle θ between F and r. With θ = 0, then Fr cos(θ) be-
comes Fr. The variation of the effective potential energy
as a function of various model parameters have been dis-
played in figure 1. Now, let us take a wavefunction in
cylindrical coordinates as ψ(r, φ) = 1√

2rπ
eimφHnm(r),

where m = 0,±1,±2, ... denotes the magnetic quan-
tum number. Inserting this wavefunction into equa-
tion (2), we find a second order differential equation
d2Hnm(r)/dr2 + 2µ/~2 [Enm − χeff.]Hnm(r) = 0, where
the effective potential Veff. is

χeff. = −
αΓee

√

1−
24Γ2

ee

πrs(1+δ2)

[

A2
−
e−A+r

r
−A2

+

e−A
−
r

r

]

− Fr +
~
2

2µ

[(
σ0m − 1

2

)2
− 1

4

r2

]

= χ
(1)
eff. +

~
2

2µ

[(
σ0m − 1

2

)2
− 1

4

r2

]

, with A+(λee, λD)2 ≡
πrs
4Γee

(

1 +

√

1−
24Γ2

ee

πrs(1 + δ2)

)

,

A−(λee, λD)2 ≡
πrs
4Γee

(

1−

√

1−
24Γ2

ee

πrs(1 + δ2)

)

and σnm = n+m+ ξ +
1

2
(3)

where we have also incorporate the effect of dynamic
screening [15]. ξ = φAB/φ0 is taken as integer with the

flux quantum φ0 = hc/e. The relative velocity is denoted
by δ and the density parameter is rs = α/a0 (where a0
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is the Bohr radius).
The purpose of this research is to study entanglement

fidelity for low-energy elastic electron-electron interac-
tion in a weak electric field and a strongly coupled semi-
classical plasma. Moreover, how can we enhance or gen-
erate or simulate a low-energy elastic electron-electron

interaction? To answer this question, we need to solve
the radial schrödinger equation with the effective model
(3) using perturbation theory [10, 11], since the equation
does not admit an exact solution with the model. Thus,
we obtain the n-th state energy as

Enm ≈ −
µ

2~2
M2

(
A2

+ −A2
−
)2

σ2
nm

−
~
2F

2µM
(
A2

+ −A2
−
)

[

3σ2
nm −

(

σ0m −
1

2

)2

+
1

4

]

M
(
A2

+A− −A+A
2
−
)
+

{[
M

6

(
A2

+A
3
− −A3

+A
2
−
)
]

−
σ2
nm~

2F 2

2µM2
(
A2

+ −A2
−
)2

}

×
σ2
nm~

4

µ2M2
(
A2

+ −A2
−
)2

{

5σ2
nm − 3

(

σ0m −
1

2

)2

+
7

4

}

−
σ2
nm~

6
(
A2

+A
4
− −A4

+A
2
−
)

96µ3M2
(
A2

+ − A2
−
)3

×

[

5σ2
nm − 3

(

σ0m −
1

2

)2

+
3

4

][

5σ2
nm − 3

(

σ0m −
1

2

)2

+
7

4

]

+
σ4
nm~

8

8µ4M5
(
A2

+ −A2
−
)5

×

[

5σ2
nm − 3

(

σ0m −
1

2

)2

+
7

4

][
M

6

(
A2

+A
3
− −A3

+A
2
−
)
] [

9σ2
nm − 5

(

σ0m −
1

2

)2

+
5

4

]

−
σ6
nm~

10

8µ5M7
(
A2

+ −A2
−
)7

[

9σ2
nm − 5

(

σ0m −
1

2

)2

+
5

4

][

5σ2
nm − 3

(

σ0m −
1

2

)2

+
7

4

]

, (4)

where M = −αΓee/
√

1− 24Γ2
ee/(πrs (1 + δ2)). Table

1 displays eigenvalues for electron-electron interaction in
semiclassical plasma under the influence of external fields
(AB-flux field and electric field) in atomic units and in
low vibrational n and rotational m states. When there
are no external fields, (i.e., when ξ = F = 0), the spac-
ing between the energy levels of the effective potential
is narrow and decreases as n increases. We found that,
there exist degeneracy among some states (n,m), for in-
stance (0, 1) and (2,−1); (1, 1) and (3,−1). There also
exist quasi-degeneracy of the energy levels in (2, 0) and
(1, 1); (3, 0) and (2, 1). Not only does the energy lev-
els of the effective potential and spacings between states
increases by exposing the system to external fields, but
also the degeneracies are removed and become split up
and down. It has been shown that increasing the strenght
of AB-flux field would lead to a substantial shift in the
energies. Its important to note that the dominance and
confinement effects of AB-flux field on electron-electron
interaction in semiclassical plasma is stronger than the
electric field and as consequence the localizations of the
quantum states can be manipulated via application of
AB-flux field

It can also be seen from this table that the lowest en-
ergy can be obtained when n = 0|1, m = −1, ξ = 0
and F = 0|0.01. However we can do a more thor-
ough analysis. Suppose ξ = 0.4 and F = 1, we have
E0,−1 = −77114.1a.u. For ξ = 2 and F = 1, we have

TABLE I: The energy values for electron-electron interaction un-
der the influence of AB-flux and external electric fields with var-
ious values of magnetic quantum numbers. The following fitting
parameters have been employed: α = rs = 5, Γee = 1, δ = 8 and
~ = µ = c = 1 .

m n F = 0, ξ = 0 F = 0, ξ = 2, F = 0.01, ξ = 0 F = 0.01, ξ = 2

0 0 -3092.11 -131.152 -3092.11 -131.150

1 -350.535 -70.4042 -350.534 -70.4000

2 -131.104 -44.5892 -131.102 -44.5819

3 -70.2885 -29.7294 -70.2838 -29.7183

1 0 -350.538 -70.5367 -350.538 -70.5331

1 -131.117 -44.8667 -131.114 -44.8601

2 -70.3183 -30.2518 -70.3137 -30.2413

3 -44.4121 -18.6248 -44.4044 -18.6098

-1 0 -3092.11 -350.538 -3092.11 -350.538

1 -3092.11 -131.117 -3092.11 -131.114

2 -350.538 -70.3183 -350.538 -70.3137

3 -131.117 -44.4121 -131.114 -44.4044

E0,−1 = −350.462a.u. Such a large discrepancy in the
energies reveal that the effect of AB flux field is more
dominance on the system than the electric field. Conse-
quently, we focus on ξ and we found that for ξ → 0.5,
for any F , E0,−1 → −∞. In addition, for ξ = 0.7 and
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F = 1, we have E0,−1 = −19284.4a.u. This indicates
that the lowest Enm would be obtained when m = −1
and ξ → 0.5.
Now, to study the entanglement fidelity in the in-

teraction process under the influence of external elec-
tric field and in a strongly coupled semiclassical plas-
mas, let’s define the entanglement fidelity (which is the
overlap between maximally entangled state) integrated

over the internal coordinates ~R and ~r as [12] f(τ) =
∣
∣
∣

〈

ψme(~R,~r)
∣
∣
∣ ψee(~R,~r, τ)

〉∣
∣
∣

2

where

ψee(~R,~r, τ) = (2π)−3/2 exp

[

−i

(
P 2

2M
+ E

)

τ

]

× exp(i ~P · ~R)Ψ(~r) (5)

denotes the wavefunction of the bipartite interaction pro-

cess, ~P is the momentum of the electron-electron inter-
action and

ψme(~R,~r) = (2π)−3/2

∫

d3k exp
[

i~k · ~r1

]

exp(i~k · ~r2).

(6)
With these expressions, the entanglement fidelity can be
written as square of the scattered wave function for a

given model; i.e., f~k ∝
∣
∣d3rΨ~k(r)

∣
∣
2
[12], where Ψ~k(r) is

the solution of the scattered wave function which can be
expressed in terms of partial wave expansion as

Ψ~k(r) = (2π)−3/2
∞∑

m+ξ= 1
2

(2m+ 2ξ)igT k
g R

k
g(r)Pg(cosθ),

(7)

where the wave number is k =
√

2µE/~2, g = m+ξ+1/2,

T k
g represents the expansion coefficient, Rk

g(r) denotes
the solution of the radial wave equation and the Legen-
dre polynomial is denoted as Pg(cosθ). For a spherical

symmetric potential (χ
(1)
eff.), the following expressions

T k
g =

[

1 +
2iµk

~2

∫ ∞

0

jg(kr)χ
(1)
eff.R

k
g(r)r

2dr

]−1

and

[
d2

dr2
+

2

r

d

dr
+ k2 −

2µ

~2

(

χ
(1)
eff. +

~
2

2µ

[
g(g − 1)

r2

])]

Rk
g(r)

= 0, (8)

hold for the expansion coefficient and the radial wave
equation respectively. The eigenfunction Rk

g(r) can be
expressed in terms of spherical Neumann function and
spherical Bessel function as follows:

Rk
g(r) = jg(kr) +

2πk

~2

[

ng(kr)

∫ r

0

drr2jg(kr)χ
(1)
eff.R

k
g(r)

+jg(r)

∫ ∞

r

drr2ng(kr)χ
(1)
eff.R

g
g(r)

]

. (9)

As earlier stated, the lowest energy can be obtained by
setting m = −1 and ξ ≈ 0.5, hence, we write the en-
tanglement fidelity for low-energy elastic interaction by
using equations (8) and (9) to find

f~k ∝

∣
∣
∫∞
0 drr2Rk

0(r)
∣
∣
2

1 +
∣
∣
∣
2µk
~2

∫∞
0
drr2χ

(1)
eff.R

k
0(r)

∣
∣
∣

2

∝

∣
∣
∣

∫∞
0 drr2 sin(kr)

kr

∣
∣
∣

2

1 +
∣
∣
∣
2µk
~2

∫∞
0
drr2χ

(1)
eff.

sin(kr)
kr

∣
∣
∣

2 . (10)

Thus, we express the entanglement fidelity for electron-
electron interaction under the influence of electric field
and surrounded by strongly coupled semiclassical plas-
mas, in terms of the ratio of entanglement fidelity for
model 3 to that of pure Coulomb potential as:

R
(λee,λD)
K =

1 +
∣
∣
∣− 2µZ2e2k

~2

∫∞
0
drr sin(kr)kr

∣
∣
∣

2

1 +
∣
∣
∣− 2µMk

~2

∫∞
0 drr2

[(

A2
−

e−Ar

r −A2
+

e−Br

r

)

− Fr + ωc~

2

(
σ0m − 1

2

)
+
(

µω2
c

8

)

r2
]

sin(kr)
kr

∣
∣
∣

2

= (ǫ+ 1)

(

ǫ+ ǫ2M̃2

[
A2

−
A2

+ + k2
−

A2
+

A2
− + k2

−
2F

k4

]2
)−1

, (11)

where ǫ is the projectile energy and it is given by ǫ =
E/(13.6Z4

e) and M̃ = 2µ2z2e2M/~4. In figure 1, we

have plotted the variation of R
(λee,λD)
K as a function of

projectile energy. In (a) we found that for a weak electric
field, the fidelity ratio for electron-electron interaction in-
crease as projectile energy increase but remains constant
or almost zero for a strong electric field. That is to say,

a weak electric field intensifies entanglement fidelity in a
strong coupled semiclassical plasmas. We use the result
of (a) to proceed to (b) (i.e. we fixed F at 0.02) by study-
ing the fidelity ratio as a function of projectile energy for
various values of α which is average distance between the
particles. As it can be seen, increasing the distance be-
tween the electrons has infinitesimal effect on the fidelity
ratio. Moreover distorting the intensity electric field (say,
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FIG. 1: Variation of fidelity ratio for electron-electron interaction under the influence of electric field in atomic units using the fitting

parameters α = 2 = rs = 2 Γee = 1, δ = 5, Γee = 1 (a) as a function of the scaled projectile energy for various values of F. (b) as a

function of the scaled projectile energy for various values of the density parameter and with F = 0.02(c) Same as (b) but for F = 0.2.

F = 0.02 → 0.2) will results into a large discrepancy.
These results provide us a valuable information on how
the efficiency of entanglement fidelity for a low-energy
elastic electron-electron interaction in a strong semiclas-
sical plasma can be influenced by the presence of external
fields.

III. CONCLUDING REMARKS

We found that to maintain a low-energy elastic
electron-electron interaction in strongly semiclassical

plasma, weak external fields are prerequisite. The en-
tanglement fidelity in the interaction process has been
explored. We have used partial wave analysis to derive
the entanglement fidelity. We found that for a low electric
field, the entanglement fidelity varies with projectile en-
ergy. Our results provide a valuable information on how
the efficiency of entanglement fidelity for a low-energy
elastic electron-electron interaction in a strong semiclas-
sical plasma can be influenced by the presence of external
field.
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