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The amendibility of a spin-0 and spin-1 particle with a combined potential in the presence of the Duffin-Kemmer-
Petiau wave equation is highly recommendable. Thus, the approximate bound state of the Duffin-Kemmer-Petiau
equation and Schrodinger equation were obtained with a combination of Hulthén and Yukawa potentials in the
framework of asymptotic iteration method and parametric Nikiforov-Uvarov method respectively for any ar-
bitrary angular momentum quantum number J using a suitable approximate scheme to the centrifugal term. This
was done when the second-order homogeneous differential equation was transformed to a form of recurrence
relation from which a quantization condition obtained was used to calculate the eigenvalue energy equation and
the corresponding wave function. In other to apply more application to this work, the scattering phase shift of
the Duffin-Kemmer-Petiau equation was calculated and the thermodynamic properties of the potential under
consideration were also calculated in view of the Schrodinger equation. It is noted that the results obtained by

varying the two strengths of the potential differs due to the effect of the screening parameter.

Introduction

In the recent years, the Duffin-Kemmer-Petiau (D.K.P.) equation as a
relativistic version of a wave equation has been used to describe the
interactions of the relativistic spin-0 and spin-1 bosons. The Duffin-
Kemmer-Petiau equation under a vector potential possessed the same
mathematical structure as that of the relativistic Klein-Gordon equation
[1]. The equivalence of these two equations (Duffin-Kemmer-Petiau
and Klein-Gordon) was presented by Feinberg and Pimentel [2,3] in the
case of charged scalar particles interacting in a minimal way with
quantized electromagnetic field. Due to the squared nature of the vector
potential in the Duffin-Kemmer-Petiau equation, only a few potential
models can interact with this equation and as such, only few selected
potentials have been reported. Among the potentials reported with this
equation are Coulomb potential [4-6], woods Saxon potential [7], de-
formed Hulthen potential [8], Yukawa potential [9], Varshni potential
[10], Deng-Fan potential [11], Hellmann potential [12,13], Sexcillator
[14], Kratzer potential [15] among others. The D.K.P. was also ex-
amined in the presence of magnetic field in (1 + 2)-dimensions by
Darroodi et al. [16]. Similarly, Bouzid and Merad [17], obtained a
space-time fractional D.K.P. equation and its solution. Recently, Has-
sanabadi et al. [18], investigated the D.K.P. equation for spin-zero
system in the presence of Godel-type background space-time. In this
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study, we want to examine the admittance of the Hulthén-Yukawa type
potential in the Duffin-Kemmer-Petiau equation and to further calculate
the scattering phase shift of the potential under consideration with the
same equation.

It is understood that complete information about quantum systems
was obtained by the investigation of scattering state solutions with
quantum mechanical potential terms [19,20]. Similarly, the scattering
state can be used to analyze the interactions between various particles
as well as atoms [21]. In the papers of Bohr et al. [22] and Dudek et al.
[23], it was pointed out that the study of scattering state problems
under Pseudo (spin) symmetry, revealed more understanding of the
symmetries in Hadron and nuclear spectroscopy, deformation and su-
perdeformation in nuclei. Thus, the understandings of more knowledge
about fine-scales systems have been gained by the examination of
scattering and bound state of such systems. Therefore, the study of
scattering state becomes an interesting area in both the relativistic and
nonrelativistic regimes. Thus, some authors studied the scattering state
with some physical potential models. Among the authors and works on
scattering state reported on scattering state so far include: Oluwadare
and Oyewumi [10,24], obtained scattering states solutions of the Klein-
Gordon equation with three physically solvable potential models and
scattering state solution of the Duffin-Kemmer-Petiau equation with the
varshni potential model respectively, Onyeaju et al. [25], studied
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scattering and bound states of the Klein Gordon particles with Hylleraas
potential within effective mass formalism, Ikot et al. [26], in their
study, investigated scattering state of Klein-Gordon particles by q-
parameter Hyperbolic Poschl-Teller potential, Yazarloo et al. [27],
obtained the relativistic scattering states of the Hellmann potential.
Adebimpe et al. [28], studied bound state and scattering phase shift of
the Schrodinger equation with modified trigonometry scarf type po-
tential. Eshghi and Abdi [29], studied relativistic particle scattering
states. Eshghi and Mehraban [30-32], investigated the nonrelativistic
particle scattering together with Pseudo-Coulomb potential plus ring-
shape and energy-dependent potentials in D-dimensions, relativistic
phase shift and effect of the q-deformed Pseudoscalar magnetic field
and scattering state on the charge carriers in grapheme. The purpose of
this work is to calculate approximate bound state, scattering phase shift
of the relativistic Duffin-Kemmer-Petiau equation and thermodynamic
properties of Hulthén-Yukawa type potential. The Hulthén-Yukawa
type potential is given as

ae*ér be*ér

1—e®r p 7 €3]
where a and b are the strengths of the potential and ¢ is the screening
parameter that characterized the range of the potential. This potential is
a combination of Hulthén potential and Yukawa potential. The Hulthén
potential has application in nuclear, particle, atomic, condensed matter
and chemical physics [33]. The Yukawa potential on the other hand,
has application in chain molecules [34], colloidal particles [35], sta-
bilization of energy levels and the computations of bound state energies
in neutral atoms [36,37]. It is therefore seen that the newly proposed
potential given in Eq. (1) has many applications in science.

V() =-

Asymptotic iteration method

In this section, we briefly outline the methodology of asymptotic
iteration. AIM is proposed to solve the homogeneous linear second-
order differential equation of the form [38,39]

¥y () = Ao (x)y, (%) + So(¥)y, (%), @)

where 1y(x) # 0, the prime denotes the derivative with respect to x and
n is the radial quantum number. The terms Sp(x) and A¢(x) are suffi-
ciently differentiable. To get the solution, we take the derivative of the
above equation with respect to x. The energy equation of any Schro-
dinger-like equation is obtained by transforming the equation into the
form of Eq. (2) and then obtains the values of 4x (x) and Sy (x) with k > 0
as follows [40-43]:

() = A1 (6) + Sim1 () + Ao () A1 (), 3
Si(x) = Sg_q1(x) + So () A_1 (x). @
With Egs. (3) and (4), one can obtain the quantization condition

Ac(x)  Se(x)

=0,k=1,2,—,—,—,
Ae—1(0) S—1 ()

8 (x) = ’

(5)

The energy eigenvalues are then obtained from Eq. (5) if the pro-
blem is exactly solvable. A comprehensive/detail of the methodology
can be found in the papers of Bayrak and Boztosun [38] and Falaye
et al. [39]. Details of the methodology can be found in Appendix A

Bound state solutions of Dufin-Kemme-Petiau equation

To obtain energy equation for the relativistic Dufin-Kemme-Petiau
wave equation of any quantum physical system, we solve the
Schrodinge-like equation of the form [44,45]

[d_Z_J(J+1)

dr? 2z M? + (Byy — U]?)Z]Fru(”) =0,

(6)

where, U? is the interacting potential, E, ; is the relativistic energy and
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F, ;(r) is the wave function. It is noted that Eq. (6) cannot be solved for
J =0 due to the centrifugal barrier. Thus, we must apply an approx-
imation scheme to deal with the centrifugal barrier. For a short po-
tential range, the following approximation

JU+1) _JU+ D&
2 (1-ed)2’ @)

is a good approximation scheme to the centrifugal barrier for ér « 1.
Substituting Eqgs. (1) and (7) into Eq. (6), we have

2
) ]Ez,! (r) =0,
®

and by making a transformation of the form y = ¢~%, the second order
differential equation in Eq. (8) becomes

(a + bd)e™
1-— e—6r

d> T+ 1)8?
[drz (1—edryp M? + | B +

> 1d &Y +EY+ 53]
— A B R (y) =0,
[ dy>  ydy ya-yr [ )
where
_ Epy— M?+ (a + b8)(a + bS — 2Ey)
§= 52 : (10)
_ 2(M? — E;)) + 2Ep.(a + bd)
b= 52 ’ 1mn
EZ;, — M?

In order to solve Eq. (9) using AIM, we transformed Eq. (9) into the
form of Eq. (2). This makes us to write the physical wave function of the
form

Ey@) =y"0 = yf O, @a3)
where

M B,
u=\/J(J+1)+T’, (14)
v=1+J. (15)

Inserting Eq. (13) into Eq. (9), we have a second order homogeneous
linear differential equation as follow

_ 2
o) = [(2u+1) Qu + 27 + 3)y]f,@)_ [(u+1+1) +§1]f@)

ya -y ya -y
=0, (16)

whose solution can be found by using the asymptotic iteration method.
Comparing Eq. (16) with Eq. (2), we deduced the following

:(2u+2J+3)y—(2u+1)

Ao ,
ya -y) 17)
wW+J+172+¢
Sy= ———-"—21,
ya-y) (18)

Using Egs. (3) and (4) and the quantization condition of Eq. (5), we
can write the following relations:

Soh=ASiou+v=0+.-§, (19)
Sh=hSeu+v=-1+,-¢§, (20)
Sh=hSeu+v=-2+,-§, 21D
Ssa=LSy e u+v=-3+ .-, (22)
Sndne1 = AnSpp1 @ u+v=—n+-§, (23)

When the preceding expressions are generalized, we obtain the
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following equation
w=[-(n+v)+ -§P, (24)
which can be fully written as

M? — E}; +J(J + 1)8?

. W_](J+1)—(a+b5+n+J+l)2 ’
=

2@+ bS+n+J+1) (25)
Scattering phase shift

In other to calculate the phase shift, we define a variable of the form
z =1 — ¢~ and substitute it into Eq. (8), we have

d? d  —Rz>+o0y— @]

1-2P—-1-20—+ ——— %" | U,k =0,
[( 2) = 1-2 =t = ¢(2) 26)
where

_ (a+bd)(a+bs—2E,) x
"= 5 T T IUED @)

_ 2(a+ bd)(Eny — a — bd)
7= 52 ’ (28)
@=(@+bd)?—J{J+1), (29)
= =B, + M> = J(J + 1)8*. (30)

where x is the asymptotic wave number whose parametric values are
given in Eq. (30). Now introducing a wave function of the form

Ey(2) = 2¢(1 — 2751 (2), @31

and substituting it into Eq. (24), we easily obtain the following hy-
pergeometric equation

ix

z1 - 2)f" (@) + [2;(— (2X+ 1- %)z]f’(z) + [( - ;)2 + N}f(z)

=0, (32)
where
11 |42 -E?%)
=— 4= ——" _r+1)2.
x=3* 2\/ &2 @+D (33)

On this note, we can write the radial wave function for any arbitrary
J wave scattering states as

By (r) = Nyy (1 — e)e™ x 2F (p; B; 05 1 — e7%), (34)

where N, ; is the normalization constant and the following have been
used for mathematical simplicity

a=x-% - R,

(35)

ix
b0=){—§+\/§, (36)
c=2. 37

In order to completely determine the scattering phase shift by
analyzing the asymptotic behaviour of the wave function, we write the
following recurrence relation of the hypergeometric function

2F (ao; bo; ¢; 2)
_ F©@T(c = ay = bo)

= 2F, ibo; 1 +ag+by—c; 1 —2)+
T(c — ao)T(c — by) 1(ao; bo Qo o — C z)
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T'(c)T'(ag + by — ¢)
T'(ag)T(bo)
- 2). (38)

(1 = z)ea—bo 2F (c —ag;c—by;c—ag—by +1;1

Considering the following property
2F(ag; bo; ¢; 0) = 1, (39)
as r — oo and Eq. (38), we have

2F(ag; bo; ¢; 1 — e™0")
I'(c — ag — by)

(e = a0 = bo) ,_5(c—ag-bo)r
I'(c — ag)T'(c — by) ’

I'(@)r® (40)

=T(c)

in which the following identities have been used

. 2i
(a+b—c)*=c—a0—bo=%, 1)
f g vt XL UR
b*=c ao—)(+6+ N, (42)
e b=yt X UR
at=c bo_)(+6 N. (43)

Therefore, as r - oo, the asymptotic form of the wave function can
easily be obtained as

Fuy () = Nyy T(e) — = 90 = bo)

. T
—_ X sm(Kr + =+ 5).
I'(c — ag)T(c — by) 2

(44)
consideration:

Taking  the condition  into

r— 00 = F ;(0) > ZSil‘l(Kr - ]7” + 5,), we obtain the phase shift as

boundary

5
€= L5710 + 1) + arg[F(%)] - arg[r()” %K i ﬂ)] -

arg[F(x+ %K - N)]

(45)
Schrodinger equation and the Hulthén-Yukawa type potential.
Given a radial Schrodinger equation of the form
[ g2
d* + 2uEn, 2uV (r) _t(e+1) R(r) = 0.
| dr? n? n? r? (46)

Substituting Egs. (1) and (14) into Eq. (46), and then using our
previous transformation of variable, we have

[ g2 1-y d ¢y +&y-¢§

e = R@),

| dy*  y(A-y)dy y*(A =y } 47)

where

¢ = 2u(a + b — Ey,p)

1= 52h2 ’ (48)

g _ 2[1([1 + b — 2En€)

2 52K2 ’ (49
_ _ Z#EM

§3 - €(€ + 1) 52h? : (50)

In this section, we use the parametric Nikiforov-Uvarov method
presented by Tezcan and Sever [46-48]. Following their work, we write
a general equation of the form

{dz L a—os d +—§152+§25—§3

ds?2 | s(1— czs)ds s2(1 — ¢38)?

}AD(S)-
(51)

The equation above gives the condition for energy as
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cn+nmn—1)c3— (2n + 1)cs + ¢7 + 2c3c5 + (2n + 1)
(g + c3/cs) + 2 /cscq =0, (52)
and the corresponding wave function as

c10— 1L —c10—1

P(s) = Ns12(1 — §) 127 ¢13p, (1 = 2c3). (53)

The parameters in Egs. (52) and (53), according the Tezcan and
Sever [46], are obtain as follows
=21 =) es=5(c— 2¢3), G =2 + §, €7 = 20405 — &),
g =CF + &, Co = Cs + €307 + Cicy, €10 = €1 + 204 + 2./Cg,
c11 = ¢ — 2¢5 + 2(/Cg + ¢3./C3), €12 = ¢4 + /C5, C13
=cs — (JC + c3./C5) (54)

Comparing Eq. (47) and Eq. (51), the parameters in Eq. (54) are
obtain as follows

01=Cz=63=1,C4=0,Cs=—%,Ca=%+§1,C7=—§2),08=§3,C9
=01+ 20,
co=1+2J¢4, ecn=3+20+2¢, co= G cs=-0+0) - G
(55)

Substituting Eq. (55) into Egs. (52) and (53) respectively, we obtain
energy equation and the corresponding wave function as

2
Sl P O — (6 +1) = (1 +n + €)
Y 20 +n+0) ’
(56)
RG) = Ny (1 — y)+p3NE 1420 _ g, (57)

Special cases of the newly proposed potential in Eq. (1)

I: when a = 0, potential (1) reduces to Yukawa potential of the form

be—Er
Ve (r) = — ,
== (58)
with energy equation of the form
2ubs 2)?
S -6 +1)-Q1Q4+n+90)
Be= S o 4 1) - | 222
’ 2u 20 +n+¢)
(59)

II: Similarly, when b = 0, the Hulthén-Yukawa potential turns to

Hulthén potential
ae—5r
1—e?’ (60)

And the energy equation in Eq. (56) reduces to

Vu(r) = —

522 -
Eno= 20+ 1) - |22
2u

—ee+ D) - +n+or)
20+ n+9)

(61)

Hulthén-Yukawa type potential and the thermodynamic properties

In this section, we study the Hulthén-Yukawa type potential with
the thermodynamic properties. Most report on the various potential
models with thermodynamic properties usually studied effect of [3(%
on the thermodynamic properties [48,49]. However, Eshghi et al.
[50,51], studied thermodynamic quantities applied to grapheme under
magnetic fields and thermodynamic physical quantities of the Dirac-
Weyl fermions in the absence of magnetic field inside grapheme
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quantum dot respectively. Similarly, Eshghi and Mehraban [52], cal-
culated the thermodynamic properties of the radial scalar power po-
tential using the characteristic function and deduced the persistent
current. In the present work, we want to study the effect of the potential
parameters on the thermodynamic properties. To do this, we modified
the nonrelativistic energy equation as

872 ( Q R)2

n =

2u \2m+1) 2 (62)
wheren =0,1, 2, 3, ——— < [R + \/—Q]. In this case,
0= 2u(ag + byd)

- 522 ’ (63)
R=n+1. (64)
The vibrational partition function is obtained as

vtb(ﬁ) - eiﬁEn ﬁ =T
nz:() (65)

where 7 = —Q + v—R and k is a Boltzmann constant. Substituting the
modified energy equation in Eq. (62) into Eq. (65), we have

. /352%2[ L @ R2)

R
Zu@B) = Y, e ¥\ Rt %),
n=0 (66)

The sum in Eq. (66) in most cases is replaced by integral in the
classical limit to easy computation and so Eq. (66) becomes

. B5°n%Q | p8*n’Q? ﬁ5zh2(n+1)2
Za@ = [ % TwoeT W dn, 67)

ﬁ(b05+a0) B(bod + ag) (c+1) B(bod + ag)
Jmer u oh|erf| —A— — erf| — A
on -2 ot | -2
\ ok \ m
u(bod + ag) —%
bod
1 1 B(bod+a0) L0 + 1)
= = _|ymer & on|ef|—*—— "
u(bod + ao) —% A
ﬁ(bo5+a0)
—ef| —— .
Shu, | —
(68)

Now that we have obtained the vibrational partition function, it is
convenient to compute the thermodynamic properties for the potential
model under consideration (see Figs. 1 and 2).

Vibrational mean energy U

U@ = Zlnzmb(m
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Fig. 1. Energy eigenvalue E,, against a for various 1 = ¢ at the first excited
state withu =h=b=1.
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Fig. 2. Energy eigenvalue E,, against b for various 1 = ¢ at the first excited
state with u =h=a=1.
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3
2(%)%]5& + M2 (BB - 21)

ﬁthﬂ(bi,;a)\r( [uo+a) )
JT + 2BB&h (e’ + eb)

/ 252
e}f Vo
w2
N om
2065+ ) 2 (b§ a) m
SM7 Pu| erf 7_5 —erf 7
au A
62;4(b5+a)\/»
2(2"“’5*“)) foh + M2 (BB — 2u)erf ILT NG
wl-E
\om

+ 2BBSh (e’ + ek)

EICLN; ﬁ5h2“(§;;a)f( [l - n)
M7 Pu erf o erf =
|- ==
\ u \ u
(69)
Vibrational specific heat capacity C
c®)=2v=—iplu
B =z B 3%
— 2
u(b5+a) [2u(bS + a)
. AN ) (\“67 ) ur ﬁmbg; @ f
Zef + R - Zerf| —=—
g 2u ‘*E A 2u \‘75
\or Vom
= JE— 2
a (b5 a) |2u(bd + a)
2muT | erf 7ﬂ(b5+ e —erf e \/—( #52n; 7’!)
-2 £
\ Vom
2u(bd +a) 3 2u (b8 +a) \? 2u (b8 + a)
§%n? —Zn( e ) +( o ) [(n2+ 771)8 + ez]
_ — .
u(b5+a)\/— 5u(b5h+a)f[ ‘z;l(g;a) n)
8muT | erf| ——-| — erf —
2u, | w—é 2u ‘J,ﬁ
\ \ow
ﬁ#(b5+a)f
Nerf 7_5
Zy\\—;
- 2
(b5 +a) 1 (b8 +a) [2u(®5+a)
87uT | erf nt 52;:; V2 —erf Boh= o 5202 ‘/7(\ 22 ")
£ £
\ ou \ u (70)
Vibrational mean free energy F
F(B) = —KTInZ,(8)
= —g 1.84 + 2In
2
a (bS+a)( [2u(bS+a)
5\/37#@:; ) pEEES h (\ ’uazhz ") BL
of| e | e e ¢
205+ @)
N
(71)
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Vibration entropy S

S(B) = KInZ,yy(B) + KT%Inzv,-b ®)

ﬁu(b;:r a)ﬁ(\“c us+a) _ n)

3 %)
(%)Zﬁ&le’ + 2KTyr /—5 erf 75 -
Zu\‘\—;
- (b5 +a) [2u(bS + a)
o ﬁ”Tﬁ(v‘ C o ‘"] i
auT [~ | erf = e .
u u - L
\u Vs
,u(b5+a)f
2KT | —erf | —2—— \/» + V2r* 0 + )
Wsmf \% ) pHO+a)
o = —ed |
K 21 w‘*é 2u ‘LE
V \ou (72)

For mathematical simplicity, we have used the following

B= z;z(bzcs;ra) A= 1;35th G = IBEhﬁB(\/E—n)’]: 1;352h232(¢§—n)2,
54h 4 | 4 B 8 u
M= =
\u \ o

BL
_ 2 (arf (A) = erf () _ (s 2 M
j_[zm(m]+1), no_(ah( >+ B)8? - )
N = Sh\/ﬁM((%B%/x — Bi8%n? — 1B16% + ano)eJ
1L 25252 4u
+ Lo B(B 52 — ?))
Xo = (,uIn(n') + uIn(2) — Ju — %Bézhz), V4

= (—2nB§ + BX(n? + B)es + eé‘Bz),

® = (%pm'e;f(A) - N)erf(G) — S5 (mn - B3)evth, M= [~ 1
_ 1p8%?B?
=

Discussion

In Table 1, we presented energy eigenvalue for 2p, 3p, 3d, 4p, 4d
and 4f for various 6 with three values for each of the potential strengths.
It is observed that the energy obtained with b = 3 and a = 0 (Yukawa

Table 1

Bound state energy eigenvalues E,, for Hulthén-Yukawa potential, Yukawa
potential (@ = 0) and Hulthén potential (b = 0) for 2p, 3p, 3d, 4p, 4d and 4f
withu=n=1.

State é a=2b=1 a=3,b=0. b=3,a=0
2p 0.30 —5.633472220 —10.26125000 —0.461250000
0.40 —2.720000000 —4.801250000 —0.245000000
0.50 —1.281250000 —2.281250000 —0.031250000
3p 0.30 —1.91126544 —3.783472221 —0.011250000
0.40 —0.642222223 —1.400555555 0.124444445
0.50 —0.031250000 —0.336805556 0.246527778
3d 0.30 —1.360015432 —3.066805555 0.238750000
0.40 —0.020000000 —0.645000000 0.480000000
0.50 0.663194445 0.468750000 0.718750000
4p 0.30 —0.680868056 —1.575312500 0.087187500
0.40 —0.020000000 —0.315312500 0.148750000
0.50 0.242187500 0.179687500 0.179687500
4d 0.30 —0.325868056 —1.132812500 0.267187500
0.40 0.400000000 0.179687500 0.418750000
0.50 0.742187500 0.742187500 0.554687500
Af 0.30 0.164444444 —0.511250000 0.495000000
0.40 0.955000000 0.847187500 0.748750000

0.50 1.375000000 1.468750000 1.000000000
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Table 2

Bound state energy eigenvalues for Hulthén-Yukawa potential, Yukawa po-
tential (a = 0) and Hulthén potential (b = 0) for 2p, 3p, 3d, 4p, 4d and 4f with
u=h=1.

State ) a=25,b=1 a=36,b=0. b=3,a=0.
2p 0.10 —0.901250000 —0.901250000 —0.901250000
0.20 —0.680000000 —0.680000000 —0.680000000
0.30 —0.461250000 —0.461250000 —0.461250000
3p 0.10 —0.323472222 —0.323472222 —0.323472222
0.20 —0.160555556 —0.160555556 —0.160555556
0.30 —0.011250000 —0.011250000 —0.011250000
3d 0.10 —0.251250000 —0.251250000 —0.251250000
0.20 —0.005000000 —0.005000000 —0.005000000
0.30 0.023875000 0.023875000 0.023875000
4p 0.10 —0.127812500 —0.127812500 —0.127812500
0.20 —0.000500000 —0.000500000 —0.000500000
0.30 0.087187500 0.087187500 0.087187500
4d 0.10 —0.080812500 —0.080812500 —0.080812500
0.20 —0.100000000 —0.100000000 —0.100000000
0.30 —0.267187500 —0.267187500 —0.267187500
4f 0.10 —0.020000000 —0.020000000 —0.020000000
0.20 —0.238750000 —0.238750000 —0.238750000
0.30 —0.495000000 —0.495000000 —0.495000000

potential) are higher than their counter part obtained with a = 3 and
b = 0 (Hulthén potential). Similarly, the energy obtained with a = 2
and b = 1 (Hulthén-Yukawa potential) are also higher than those ob-
tained with a = 3 and b = 0 but lower than those obtained with a = 0
and b = 3. It is noted that as § increases at constant n and constant ¢
respectively, the energy eigenvalue increases. To clearly study the
variation in the energy eigenvalue for the various states with different
values of the potential strengths, we computed other numerical results
in Table 2. In Table 2, we have taken a = da. Using the same values as
used for a and b in Table 1, it is noted in Table 2 that as a = da, the
result for Hulthén-Yukawa potential and its subsets (Hulthén potential
and Yukawa potential) are equivalent. This indicated that the differ-
ences in the results of Table 1 was caused by the screening parameter
which have positive effect on the parameter b.

To study the thermodynamic properties, we first obtained a high
temperature partition function. This was used to compute the various
thermodynamic properties in the text. The variation of these thermo-
dynamic properties with respect to the two potential strength a and b
were fully studied. In Figs. 3 and 4, we examined the variation of the
vibrational mean energy U () against a and b respectively for various .
It is observed in both cases that an increase in any of the potential
strength result to a decreases in the vibrational mean energy. However,
at the same values of the two potential strengths, the vibrational mean
energies obtained with b are higher than those obtained with a. This
effect is caused by the screening parameter which has more decreasing
effect on the result obtained with a than with b according to Eq. (56). In
Figs. 5 and 6, we examined the behavior of the vibrational specific heat
against the two potential strengths. It is noted in both cases that as each
of the potential strength increases, the vibrational specific heat in-
creases. It is observed here that at a < 1 and b < 1.4, the vibrational
specific heat remains constant. This is because, the values of the po-
tential strength at this range has no significant change in the vibrational
specific heat. The effect of the screening parameter was also observed
here. In Figs. 7 and 8, we plotted the vibrational mean free energy
against the potential strengths. It is observed that as each of the po-
tential strength increases, the vibrational mean free energy decreases.
The effect of the screening parameter on the results was also observed.
In Figs. 9 and 10, we showed the variation of the vibrational entropy
against the potential strength. In each case, the vibrational entropy
decreases monotonically as each of the potential strengths increases.
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Fig. 3. Vibrational mean energy U as a function of a (potential strength) for
various S withu =h =b=1.
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Fig. 4. Vibrational mean energy U as a function of b (potential strength) for
various withu=h=a=1.

Conclusion

The approximate relativistic bound states solutions of the Duffin-
Kemmer-Petiau equation in the presence of Hulthén-Yukawa type po-
tential has been fully obtained using the asymptotic iteration method.
The effect of the screening parameter § on the energy eigenvalues has
been numerically studied. We have mathematically analyzed the scat-
tering phase shift of the Hulthén-Yukawa type potential under the
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Fig. 5. Vibrational specific heat C as a function of a (potential strength) for
various B with u =h=b=1.
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Fig. 6. Vibrational specific heat C as a function of b (potential strength) for
various S withu =h=a=1.

relativistic Duffin-Kemmer-Petiau equation. It is deduced that the
screening parameter brings about a variation in the numerical results
between the Hulthén-Yukawa type potential and its subsets. Finally, we
calculated the thermodynamic properties of the Hulthén-Yukawa type
potential. We know that our results will find applications in different
areas of physics since the scattering state and the thermodynamic
properties have been reported before in the available literature for
other potentials.
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Fig. 7. Vibrational mean free energy F as a function of a (potential strength) for .
Bwithu=h=>b=1

various S withu =h =b=1.
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Fig. 10. Vibrational Entropy S as a function of b (potential strength) for various

Fig. 8. Vibrational mean free energy F as a function of b (potential strength) for Bwithu=h=a=1

various f with yu =h =a =1.

Appendix A
Methodology of asymptotic iteration (AIM)
AIM is proposed to solve the homogeneous linear second-order differential equation of the form
Yy () = A0 (x)y,, () + So (), (), (A1)

where 14(x) # 0, the prime denotes the derivative with respect to x and n is the radial quantum number. The terms Sy (x) and 1, (x) are sufficiently
differentiable. To get the solution, we take the derivative of the above equation with respect to x:

¥y (x) = 400y, (x) + s1(x)y, (), (A2)

where
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206) =y 00) + so(x) + A5 (X),

51(x) = s5(x) + 5(x) A (x).

Taking the derivative of Eq. (A2), we have

W () = ()Y, (x) + 55 ()y, (),

where

A (x) = 2{(x) + 51(x) + 20(X)A (x),

$206) = 8/ (X) + $o() 4 (x).

Thus, Eq. (A1) can be iterated to (k + 1)* and (k + 2)* derivatives, with k = 1, 2, 3, 4, .... . Hence,

YD () = Ager ()3, () + 511 (), (),

YD (x) = A )y (6) + s (), (),

Here, we have used

Ae(X) = Ao () + sp1(6) + Ao (0)Ap—1 (X),

8 () = sg-1 (%) + $0(X) A1 (x).

Lm0 @) =

500 _ skma)
() A ()

8 (x) = ’

L =

Taking the ratio of Eq. (A8) and Eq. (A9), we have

W@ Ay, () + (500 A 06y (6]
YD) A () (X)) + (ko1 (0)/ A1 ())y, (0]

For a very large k > 0, we conveniently have

a(x).

This results to a quantization conditions

A (x) S (x)
=1 (X) Sp—1(x)

Then, Eq. (A10) reduces to

Ay (x)
A1 () ’

=0, k=1,2,-—-,

which yields a general solution of Eq. (A1) as

y0) = exp(- [ a()dr) x [Cz —a feXP([f/lo(x”) + 20£(x”)]dx”)dx’]

where ¢; and ¢, are constants of integration.

Appendix B. Supplementary data
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Supplementary data to this article can be found online at https://doi.org/10.1016/j.rinp.2019.102409.
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