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Let (MN , g, e−fdv) be a complete smooth metric measure space with ∞-Bakry–
Émery Ricci tensor bounded from below. We derive elliptic gradient estimates for 
positive solutions of a weighted nonlinear parabolic equation

(
Δf − ∂

∂t

)
u(x, t) + q(x, t)uα(x, t) = 0,

where (x, t) ∈ MN × (−∞, ∞) and α is an arbitrary constant. As Applications 
we prove a Liouville-type theorem for positive ancient solutions and Harnack-type 
inequalities for positive bounded solutions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

Recently, there have been many interesting results relating to parabolic and elliptic gradient estimates, 
Harnack inequalities and Liouville-type theorems on either Riemannian manifolds or smooth metric measure 
spaces. This is due to the fact that these estimates are now fundamental tools in Geometric Analysis and 
PDEs. Historically, gradient and Harnack estimates for parabolic equations on manifold originated in Li and 
Yau [15] where they extended the work in [9]. Then Hamilton [11] proved an elliptic type gradient estimate for 
the heat equation. But this Hamilton-type of estimates is a global result which requires the heat equation 
defined on closed manifolds. Souplet and Zhang [19] later proved a localised version of Hamilton-type 
gradient estimate by combining Li–Yau’s Harnack inequality [15] and Hamilton’s gradient estimate [11]. See 
for examples [1,4,8,16,18,20,22,23,26,28–30] for many more interesting results and applications in various 
settings. In particular, Brighton [4] proved an elliptic gradient estimate for positive weighted-harmonic 
functions by applying Yau’s idea to function uε (0 < ε < 1) instead of ln u used in [27], and hence obtained 
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a Liouville theorem for positive bounded weighted harmonic functions with nonnegative ∞-Bakry–Émery
Ricci tensor.

This paper is an extension of [25]. In that paper, the author proved elliptic gradient estimates and 
Liouville type theorem for positive solutions to a nonlinear parabolic equation

(
Δf − ∂

∂t

)
u(x, t) + au(x, t) lnu(x, t) = 0, a ∈ R (1.1)

on complete smooth metric measure spaces with m-Bakry–Émery Ricci tensor bounded below. In the present 
paper, we use a similar approach to derive localised elliptic (space only) gradient estimates for positive 
solutions to the weighted nonlinear parabolic equation

(
Δf − ∂

∂t

)
u(x, t) + q(x, t)uα(x, t) = 0, (1.2)

where α ∈ R. The function q(x, t) is a space–time smooth function at least C1 in space and C0 in time. If 
q(x, t) = 0, then the nonlinear equation (1.2) reduces to a weighted heat equation which was studied in [24]. 
It is well-known that all solutions to Cauchy problem for the weighted heat equation exist for all time. For 
the applications of our gradient estimates, we prove parabolic Liouville properties and Harnack inequalities 
for positive ancient solutions to (1.2) under the assumption that ∞-Bakry–Émery tensor is bounded below. 
Notice also that (1.2) is a weighted version of

(
Δ − ∂

∂t

)
u(x, t) + q(x, t)uα(x, t) = 0, α ≥ 1 (1.3)

considered by Zhu in [30]. But in our case α is an arbitrary constant rather than only being greater than 1.

1.2. Smooth metric measure spaces

A smooth metric measure space is denoted by the triple (MN , g, e−fdv), where (MN , g) is an 
N -dimensional complete manifold with the Riemannian metric tensor g, volume element dv and f is a 
C∞ real-valued function on M . Smooth metric measure spaces are naturally endowed with analogue of 
Laplace–Beltrami operator, called weighted Laplacian and analogue of Ricci tensor, called Bakry–Émery 
tensor. The weighted Laplacian defined by

Δf := Δ − 〈∇f,∇·〉,

where Δ is the Laplace–Beltrami operator, is symmetric and self-adjoint with respect to the weighted 
measure e−fdv. The m-Bakry–Émery tensor is defined by

Ricmf := Ric + ∇2f − 1
m
df ⊗ df

for some constant m > 0, where Ric is the Ricci tensor of the manifold and ∇2 is the Hessian with respect 
to the metric g. When m is infinite we have the ∞-Bakry–Émery tensor

Ricf = lim
m→∞

Ricmf := Ric + ∇2f.

This tensor is related to the gradient Ricci soliton

Ricf = λg
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where λ is a real constant. A Ricci soliton is said to be shrinking, steady or expanding depending on 
whether λ is positive, zero or negative respectively. Ricci solitons play an important role in the theory of 
singularities for the Ricci flow [12] (see [5] for a recent survey on Ricci solitons). The weighted Laplacian 
and the Bakry–Émery tensor are related by Bochner formula

1
2Δf |∇u|2 = |∇2u|2 + 〈∇Δfu,∇u〉 + Ricf (∇u,∇u). (1.4)

Since Δf and Ricf are natural extension of Laplace–Beltrami operator and Ricci tensor respectively, it 
is not unexpected that many geometric and topological results for Riemannian manifolds could be extended 
to smooth metric measure spaces, see for instance [2,14].

1.3. Motivations

The motivations for this work come from geometric and physical applications of (1.2). For instance, the 
authors in [3] show that if f is a constant then the equation

Δu + q(x)uα + b(x)u = 0 (1.5)

which is a non-weighted static version of (1.2) (when b(x) ≡ 0), is equivalent to Yamabe problem on 
noncompact Riemannian manifold. Clearly, setting g̃ = u4/n−2g, u > 0, then for R(x), the scalar curvature 
of g and K(x) ∈ C∞(M), the scalar curvature of g̃, we have the relation

Δu− n− 2
4(n− 1)R(x)u + n− 2

4(n− 1)K(x)u
n+2
n−2 = 0, (1.6)

which is of the form (1.5). Yamabe problem demands the existence of a positive everywhere defined solution 
of (1.6). Indeed, the existence and uniqueness of such solution depends on the geometry of the underlying 
manifold. Thus, g can be pointwise conformally deformed to a complete metric g̃ of a scalar curvature K(x). 
For further discussions on existence, uniqueness and a priori estimates of (1.5) (resp. Yamabe-type equation) 
see [17].

On the other hand, the static form of (1.2) for a special α is related to the Euler–Lagrange equation for 
the weighted Yamabe quotient on compact smooth metric spaces

Δfu− m + n− 2
4(m + n− 1)R

m
f u− c1u

n+2
m+n−2 e

f
m + c2u

m+n+2
m+n−2 = 0, m > 0 (1.7)

where Rm
f is the weighted scalar curvature defined by

Rm
f := R + 2Δf − m + 1

m
|∇f |2.

Thus, the weighted volume can be conformally deformed as in [7]. In fact, setting

(M, g̃, e−f̃dṽ,m) = (M, e
2σ

m+n−2 g, e
(m+n)σ
m+n−2 e−fdv)

for some σ ∈ C∞(M), then the weighted Yamabe quotient is conformally invariant, i.e., Q̃(u) = Q(eσ/2u), 
where Q : C∞(M) → R is defined by the functional

Q(u) :=

( ∫
|∇u|2 + m+n−2

4(m+n−1)Rm
f u2

)( ∫
|u|

2(m+n−1)
m+n−2 e

f
m

) 2m
n

( ∫
|u|

2(m+n)
m+n−2

) 2m+n−2
n

,
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where all integrals are with respect to the weighted measure. The infimum of the above functional for all 
u ∈ W 1,2(M, g, e−fdv) is called the weighted Yamabe constant. Case also shows in [6] that Yamabe-type 
problem on (M, g, e−fdv) interpolates between Yamabe problem and the problem of finding minimisers for 
Perelman’s ν-entropy. Meanwhile, it is well known that Yamabe constant and Perelman’s ν-entropy are 
remarkably related to Sobolev and logarithmic Sobolev inequalities. Interested readers can check for [10,13]
and [6]. We do hope that the gradient estimate for equation (1.2) may be useful for tackling the Yamabe 
problem of smooth metric measure spaces.

Suppose f is a constant function on M , a physical application of the term q(x, t)uα of (1.2) may be 
seen if u = u(x, t) is considered as a population density. Here the nonlinearity in uα could be interpreted 
as intraspecies interaction like competition or inhibition, while its product with q(x, t) is a spatial relation 
in the form of interaction with environment. If such interaction is time-independent, then q(x, t) would be 
replaced by q(x).

1.4. Main results

This paper aims majorly at obtaining elliptic type gradient estimates for positive solutions of (1.2). 
Precisely, Let

QR,T ≡ B(x0, R) × [t0 − T, t0] ⊂ M × (−∞,∞),

where B(x0, R) is a ball of radius R > 0 centred at x0, and t0 ∈ R, T > 0, we have

Theorem 1.1. Let (MN , g, e−fdv) be an N -dimensional complete smooth metric measure space with Ricf ≥
−(N − 1)K for some K ≥ 0. Fix x0 ∈ M and R ≥ 2. Suppose that u(x, t) is a positive solution to (1.2) in 
QR,T , T > 0. Suppose further that u(x, t) ≤ D for some constant D in QR,T and β := sup(x,t)∈QR/2,T

|h| +1, 
where h = ln u/D. Then, for all (x, t) ∈ QR/2,T with t = t0 − T , there exists a constant C(δ) depending on 
N and δ such that

1. if α ≥ 1

|∇u(x, t)|
u(x, t) ≤ C(δ)

(√1 + |μ|
R

+ 1√
t− (t0 − T ))

+
√
K +

√
αD

1
2 (α−1)‖q+‖1/2

L∞(QR,T )

+D
1
3 (α−1)‖∇q‖1/3

L∞(QR,T )

)(
β + ln D

u(x, t)

)
,

(1.8)

2. if 0 < α < 1

|∇u(x, t)|
u(x, t) ≤ C(δ)

(√1 + |μ|
R

+ 1√
t− (t0 − T ))

+
√
K +

√
αM

1
2 (α−1)‖q+‖1/2

L∞(QR,T )

+M
1
3 (α−1)‖∇q‖1/3

L∞(QR,T )

)(
β + ln D

u(x, t)

)
,

(1.9)

where M := inf{u(x, t) : for all (x, t) ∈ QR,T },
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3. if α ≤ 0

|∇u(x, t)|
u(x, t) ≤ C(δ)

(√1 + |μ|
R

+ 1√
t− (t0 − T ))

+
√
K + M

1
2 (α−1)‖q+‖1/2

L∞(QR,T )

+M
1
3 (α−1)‖∇q‖1/3

L∞(QR,T )

)(
β + ln D

u(x, t)

)
.

(1.10)

Here q+(x) = max{q(x), 0} and μ := max{x|d(x,x0)=1} Δfr(x), where r(x) is the distance from a fixed 
point x0 to point x in M .

Notice that when q(x, t) ≡ 0 (1.2) reduces to the weighted heat equation

(
Δf − ∂

∂t

)
u(x, t) = 0. (1.11)

As an application of Theorem 1.1, we derive some Liouville-type theorems for positive ancient solutions to 
(1.2) and (1.11) under certain growth condition near infinity, when Ricf ≥ 0. This result is similar to the 
case on manifold with nonnegative Ricci tensor obtained by X. Zhu [30].

Theorem 1.2. Let (MN , g, e−fdv) be an N -dimensional complete smooth metric measure space with
Ricf ≥ 0. Suppose that q(x, t) = q(x), that is, time-independent and satisfies the following conditions

(a) ‖q+‖L∞(B(x0,R)) = o(R−((α−1)) as R → ∞
(b) ‖∇q‖L∞(B(x0,R)) = o(R−(α−1)) as R → ∞.

Then;

(1) For q(x) ≡ 0 equation (1.2) has no positive ancient solution with u(x, t) = o([r1/2(x) + |t|1/4]) near 
infinity. (Ancient solution is a solution defined in all space and negative time).
Furthermore, for q(x, t) ≡ 0,

(2) equation (1.11) has only constant positive ancient solution with u(x, t) = o([r1/2(x) + |t|1/4]) near 
infinity,

(3) equation (1.11) has only constant ancient solution with u(x, t) = o([r1/2(x) + |t|1/4]) near infinity,
where r is the distance from x to a fixed point y ∈ M .

Another application of our gradient estimates is the following Harnack type-inequalities:

Theorem 1.3. Let (MN , g, e−fdv) be an N -dimensional complete smooth metric measure space with Ricf ≥
−(N − 1)K for some K ≥ 0. Suppose ‖q+‖L∞ < ∞ and ‖∇q‖L∞ < ∞. If u(x, t) is a positive solution to 
(1.2) and u ≤ D for all (x, t) ∈ M × [0, ∞), then

u(y, t) ≤ u(x, t)Γ(r(x,y),t)(De)1−Γ(r(x,y),t) (1.12)

for all x, y ∈ M , where

Γ(r(x, y), t) = exp
(
− C(δ)

( 1√
t− (t0 − T )

+
√
K + λ

)
r
)
,

where
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λ := max{
√
αD

1
2 (α−1)‖q+‖1/2

L∞(QR,T ), D
1
3 (α−1)‖∇q‖1/3

L∞(QR,T )} for α ≥ 1,

λ := max{
√
αM

1
2 (α−1)‖q+‖1/2

L∞(QR,T ), M
1
3 (α−1)‖∇q‖1/3

L∞(QR,T )} for 0 < α < 1,

λ := max{M 1
2 (α−1)‖q+‖1/2

L∞(QR,T ), M
1
3 (α−1)‖∇q‖1/3

L∞(QR,T )} for α ≤ 0,

M := inf{u(x, t) : for all (x, t) ∈ M × [0, ∞)} and r = r(x, y) denotes the geodesic distance between x and y.

Remark 1.4. Note that we study (1.2) for smooth function f and an arbitrary constant α. The elliptic 
gradient estimates obtained extend and generalise some known results, for instance, Theorem 1.1 of [28], 
where (1.2) was studied for constant function f and α ∈ (0, 1), Theorem 1.7 of [30], where (1.2) was studied 
for constant function f and α > 1 and Theorem 1.2 of [16], where (1.2) was studied for arbitrary constants 
q and α.

Remark 1.5. Putting q(x, t) ≡ 0, in (1.2) we can deduce gradient estimate (1.3) of Theorem 1.1 obtained 
in [24] for the weighted heat equation. Obviously, our estimates (1.8) (resp.(1.9) and (1.10)) generalise
estimate (1.3) of Theorem 1.1 in [24]. Also, our estimates (1.8) and (1.10) generalise estimates (2.1) and 
(2.3) of Theorem 2.1 in [20] with f being a constant and α ≥ 1 and α ≤ 0 respectively.

The rest of this paper is organised as follows. In Section 2, we will give some basic lemmas and introduce 
a space–time cut-off function that will be used in the proofs of Theorems 1.1 and 1.2. Section 3 presents 
detail proofs of main results.

2. Basic lemma

In this section we apply the arguments in Wu [24] and Zhu [30] to prove Theorem 1.1. Define a smooth
function h(x, t) = ln u(x, t)/D for some constant D in QR,T . It is obvious that h ≤ 0 and h satisfies

(
Δf − ∂

∂t

)
h(x, t) + |∇h(x, t)|2 + q(Deh)α−1 = 0. (2.1)

With this we prove the following lemma which is an extension of [19,22].

Lemma 2.1. Let (MN , g, e−fdv) be an N -dimensional smooth complete metric measure space with Ricf ≥
−(N − 1)K for some K ≥ 0. Fix x0 ∈ M and R ≥ 0. Let h = h(x, t) be a smooth non-positive solution to 
(2.1) in QR,T , Then for all (x, t) ∈ QR,T , the function

w = |∇ ln(β − h)|2 = |∇h|2
(β − h)2 (2.2)

satisfies

(
Δf − ∂

∂t

)
w ≥ 2[h + (1 − β)]

β − h
〈∇h,∇w〉 + 2(β − h)w2 − 2(N − 1)Kw

−2
[
α + h

β − h
+ 1 − β

β − h

]
(Deh)α−1qw − 2

(β − h)2 (Deh)α−1〈∇h,∇q〉
(2.3)

for all (x, t) in QR,T ,
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Proof. We mostly work in a local orthonormal system with the convention that h2
i = |∇h|2, hii = Δh and 

hijk is the third order covariant derivative, and repeated indices are summed up.
Using (2.1) and (2.2) we compute that

wt = 2hi(ht)i
(β − h)2 + 2h2

iht

(β − h)3

=
2hi(Δfh + h2

j + q(Deh)α−1)i
(β − h)2 +

2h2
i (Δfh + h2

j + q(Deh)α−1)
(β − h)3

= 2hi(Δfh)i
(β − h)2 + 4hihjhij

(β − h)2 + 2hiqi(Deh)α−1

(β − h)2 + 2(α− 1)(Deh)α−1h2
i q

(β − h)2 + 2h2
iΔfh

(β − h)3

+
2h2

ih
2
j

(β − h)3 + 2h2
i q(Deh)α−1

(β − h)3 .

Similarly,

wj = 2hihij

(β − h)2 + 2h2
ihj

(β − h)3

and

wjj =
( 2hihij

(β − h)2
)
j
+

( 2h2
ihj

(β − h)3
)
j

=
2h2

ij

(β − h)2 + 2hihijj

(β − h)2 + 8hihjhij

(β − h)3 + 2h2
ihjj

(β − h)3 +
6h2

ih
2
j

(β − h)4 .

Using the following Ricci identity hijj = hjji + Rijhj , a straightforward computation yields

2hihijj

(β − h)2 − 2hihijfj
(β − h)2 = 2hi(hjj − hjfj)i

(β − h)2 + 2(Rij + fij)hihj

(β − h)2 .

Hence

Δfw = Δw − 〈∇f,∇w〉 = wjj − wjfj

=
2h2

ij

(β − h)2 + 2hi(hjj − hjfj)i
(β − h)2 + 2(Rij + fij)hihj

(β − h)2 + 8hihjhij

(β − h)3

+ 2h2
i (hjj − hjfj)
(β − h)3 +

6h2
ih

2
j

(β − h)4

=
2h2

ij

(β − h)2 + 2hi(Δfh)i
(β − h)2 + 2Ricf (∇h,∇h)

(β − h)2 + 8hihjhij

(β − h)3 + 2h2
iΔfh

(β − h)3 +
6h2

ih
2
j

(β − h)4 .

Combining the above computations for Δfw and wt, we have

(
Δf − ∂

∂t

)
w =

2h2
ij

(β − h)2 + 2(Rij + fij)fifj
(β − h)2 + 8hihjhij

(β − h)3 +
6h2

ih
2
j

(β − h)4 − 4hihjhij

(β − h)2

− 2(Deh)α−1hiqi
(β − h)2 −

2h2
ih

2
j

(β − h)3 − 2(Deh)α−1h2
i q

(β − h)3 − 2(α− 1)h2
i q(Deh)α−1

(β − h)3

=
( 2h2

ij

2 + 4hihjhij

3 +
2h2

ih
2
j

4

)
+

(4hihjhij

3 +
4h2

ih
2
j

4 − 4hihjhij

2
(β − h) (β − h) (β − h) (β − h) (β − h) (β − h)
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−
2h2

ih
2
j

(β − h)3
)

+ 2(Rij + fij)fifj
(β − h)2 − 2(Deh)α−1hiqi

(β − h)2 − 2(Deh)α−1h2
i q

(β − h)3

− 2(α− 1)h2
i q(Deh)α−1

(β − h)3

≥
( 2
β − h

hjwj − 2hjwj +
2h2

ih
2
j

(β − h)3
)
− 2(N − 1)K |∇h|2

(β − h)2

− 2(Deh)α−1hiqi
(β − h)2 − 2(Deh)α−1h2

i q

(β − h)3 − 2(α− 1)h2
i q(Deh)α−1

(β − h)3

= 2[h + (1 − β)]
β − h

〈∇h,∇w〉 + 2(β − h)w2 − 2(N − 1)Kw

− 2(α− 1)(Deh)α−1qw − 2(Deh)α−1

β − h
qw − 2

(β − h)2 (Deh)α−1〈∇h,∇q〉

where we have used the condition Ricf ≥ −(N − 1)K and the following identities

〈∇h,∇w〉 = hjwj = 2hihijhj

(β − h)2 +
2h2

ih
2
j

(β − h)3

and

( 2h2
ij

(β − h)2 + 4hihjhij

(β − h)3 +
2h2

ih
2
j

(β − h)4
)

= 2
( hij

β − h
+ hihj

(β − h)2
)2

≥ 0.

This concludes the proof. �
To prove Theorem 1.1, we shall apply the last Lemma and the localisation technique of Souplet–Zhang 

[19]. The theorem gives the elliptic gradient estimate for the positive smooth solutions to the linear weighted 
evolution equation (1.2). We first introduce a well known cut-off function taken from [24] (see also [19]). 
The cut-off estimates will allow us derive the desired bounds in QR,T .

Lemma 2.2. Fix t0 ∈ R and T > 0. For any given τ ∈ (t0 − T, t0], there exists a smooth function ψ :
[0, ∞) × [t0 − T, t0] → R satisfying the following properties

(1) ψ = ψ(d(x, x0), t) ≡ ψ(r, t); ψ(r, t) = 1 in QR/2,T/2, 0 ≤ ψ(r, t) ≤ 1.
(2) ψ is a radially decreasing function in spatial variables and dψdr = 0 in QR/2,T .
(3) |∂ψ∂r |

1
ψa ≤ Ca

R and |∂
2ψ

∂r2 | 1
ψa ≤ Ca

R2 in [0, ∞) × [t0 − T, t0], where 0 < a < 1.
(4) |∂ψ∂t |

1
ψ1/2 ≤ C

τ−(t0−T ) in [0, ∞) × [t0 − T, t0] for some constant C > 0 and ψ(r, t0 − T ) = 0 for all 
r ∈ [0, ∞).

We shall now apply Lemma 2.1 and 2.2 to prove Theorem 1.1 via the maximum principle in a local 
space–time supported set. We mainly follow the arguments in [24].

3. Proof of Theorems 1.1, 1.2, and 1.3

Proof of Theorem 1.1. Choose a smooth function ψ with support in QR,T and satisfies Lemma 2.1. We 
then estimate (Δf − ∂t)(ψw) and analyse the result at a space–time point where the function ψw attains 
its maximum.
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A straightforward computation yields(
Δf − ∂

∂t

)
(ψw) = ψ

(
Δf − ∂

∂t

)
w + 2∇w∇ψ + w

(
Δf − ∂

∂t

)
ψ. (3.1)

Using Lemma 2.1 in (3.1) we have

(
Δf − ∂

∂t

)
(ψw) −

(
d + 2∇ψ

ψ

)
∇(ψw)

≥ 2ψ(β − h)w2 − (d · ∇ψ)w − 2 |∇ψ|2
ψ

w − 2(N − 1)Kψw

− 2
(β − h)2 (Deh)α−1ψ〈∇h,∇q〉 − 2

[
α + h

β − h
+ 1 − β

β − h

]
(Deh)α−1qψw

+w
(
Δf − ∂

∂t

)
ψ,

(3.2)

where we have used the identity

(d · ∇ψ)ψ + 2∇ψ∇w =
(
d + 2∇ψ

ψ

)
∇(ψw) − (d · ∇ψ)w − 2 |∇ψ|2

ψ
w

and

d := 2[h + (1 − β)]
β − h

∇h.

Suppose the space–time maximum of ψw is attained at the point (x1, t1) in QR,T . We can assume without 
loss of generality that x1 is not in the cut locus of M , due to Calabi’s argument [15]. We also assume that 
(ψw)(x1, t1) > 0, otherwise w(x, t) ≤ 0 and the result holds trivially. Then at the point (x1, t1) (which is 
the maximal) we have

Δf (ψw) ≤ 0, (ψw)t ≥ 0 and ∇(ψw) = 0.

By the last estimates at (x1, t1), (3.2) can be simplified as

2ψ(1 − h)w2 ≤ (d · ∇ψ)w + 2 |∇ψ|2
ψ

w + 2(N − 1)Kψw

+ 2
(β − h)2 (Deh)α−1ψ〈∇h,∇q〉 + 2

[
α + h

β − h
+ 1 − β

β − h

]
(Deh)α−1qψw

−w
(
Δf − ∂

∂t

)
ψ.

(3.3)

We now have two situations to consider; namely, if x /∈ B(x0, 1) and if x ∈ B(x0, 1). Firstly, we consider 
the situation if x /∈ B(x0, 1). To do the analysis, we need upper bounds for each term on the right hand 
side (RHS) of (3.3) at (x1, t1).

Let C be a constant depending only on N , C(δ) a constant depending on N and δ and their values vary 
from line to line. Closely following the arguments in [19,22] with repeated use of Young’s inequality and the 
condition that β − h ≥ δ > 0.

For the first term on the RHS of (3.3):

(d · ∇ψ)w =
( 2h
β − h

∇h∇ψ
)
w +

(2(1 − β)
β − h

∇h∇ψ
)
w,

then
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( 2h
β − h

∇h∇ψ
)
w ≤ 2|h||∇ψ|w 3

2 = 2[ψ(β − h)w2] 3
2 · |h||∇ψ|

[ψ(β − h)]3/4

≤ ψ(β − h)w2 + C
( h

β − h
· |∇ψ|
ψ3/4

)4

≤ ψ(β − h)w2 + C

R4
h4

(β − h)3

(3.4)

and (2(1 − β)
β − h

∇h∇ψ
)
w ≤ 2|1 − β||∇ψ|w3/2 = (ψw2)3/4 · |1 − β||∇ψ|

ψ3/4

≤ δ

8(ψw2) + C(δ)
( |∇ψ|
ψ3/4

)4

≤ δ

8(ψw2) + C(δ) 1
R4 .

(3.5)

For the second term on the RHS of (3.3):

2|∇ψ|2
ψ

w = 2ψ1/2w · |∇ψ|2
ψ3/2

≤ δ

8(ψ1/2w)2 + C(δ)
( |∇ψ|2

ψ3/2

)2

≤ δ

8(ψ1/2w)2 + C(δ) 1
R4 .

(3.6)

For the third term on the RHS of (3.3):

2(N − 1)Kψw ≤ δ

8(ψ1/2w)2 + C(δ)((N − 1)Kψ1/2)2

≤ δ

8ψw
2 + C(δ)K2.

(3.7)

For the sixth term on the RHS of (3.3).

−w
(
Δf − ∂

∂t

)
ψ = −w(Δfψ) + wψt.

By the property that ψ is a radial function and the weighted Laplacian comparison theorem [21, Theorem 3.1]

Δfr(x) ≤ μ + (N − 1)K(R− 1),

where r(x, x0) ≥ 1 in B(x0, R), μ := max{x|d(x,x0)=1} Δr(x) and Ricf ≥ −(N − 1)K:

−(Δfψ)w = −
((∂ψ

∂r

)
Δfr +

(∂2ψ

∂r2

)
· |∇r|2

)
w

≤ −
((∂ψ

∂r

)
(α + (N − 1)K(R− 1)) + ∂2ψ

∂r2

)
w

≤
(∣∣∣∂2ψ

∂r2

∣∣∣ 1
ψ1/2 + (α + (N − 1)K(R− 1))

∣∣∣∂ψ
∂r

∣∣∣ 1
ψ1/2

)
ψ1/2w

≤ δ

8ψw
2 + C(δ)

(∣∣∣∂2ψ

∂r2

∣∣∣ 1
ψ1/2 + (α + (N − 1)K(R− 1))

∣∣∣∂ψ
∂r

∣∣∣ 1
ψ1/2

)
≤ δ

8ψw
2 + C(δ)

R4 + C(δ)μ2

R2 + C(δ)K2

(3.8)
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where we have used the property (4) in Lemma 2.2, and

ψtw ≤ ψ1/2w
|ψt|
ψ1/2

≤ δ

8ψw
2 + C(δ)

( |ψt|
ψ1/2

)2

≤ 1
8ψw

2 + C(δ)
(τ − (t0 − T ))2 .

(3.9)

Case 1: For α ≥ 1.
For the fourth term on the RHS of (3.3): Here we know that 0 < eh(α−1) ≤ 1 since h is nonpositive. 

Therefore

2
(β − h)2 (Deh)(α−1)ψ〈∇h,∇q〉 ≤ 2

(β − h)2 (Deh)(α−1)ψ|∇h||∇q|

≤ 2
(β − h)D

α−1ψ|∇q|w1/2

≤ δ

8(ψ1/4w1/2)4 + C(δ)
(
ψ3/4Dα−1 |∇q|

β − h

)4/3

≤ δ

8ψw
2 + C(δ)D 4

3 (α−1) |∇q|4/3
(β − h)4/3

≤ δ

8ψw
2 + C(δ)D 4

3 (α−1)|∇q|4/3.

(3.10)

For the fifth term on the RHS of (3.3): Considering the conditions β−h ≥ δ > 0, β := sup(x,t)∈QR/2,T
|h| +

1 ≥ 1 and the fact that h is nonpositive, we note that

0 < eh(α−1) ≤ 1, 0 <
−h

β − h
= 1 − β

β − h
< 1 and 1 − β

β − h
≤ 0.

Therefore

−1 <
h

β − h
< 0 and 0 < α + h

β − h
+ 1 − β

β − h
< α

and

2
[
α + h

β − h
+ 1 − β

β − h

]
(Deh)(α−1)qψw ≤ 2

[
α + h

β − h
+ 1 − β

β − h

]
D(α−1)q+ψw

≤ δ

8ψw
2 + C(δ)

[
α + h

β − h
+ |1 − β|

β − h

]2(
D(α−1)ψ1/2q+

)2

≤ δ

8ψw
2 + C(δ)α2D2(α−1)(q+)2,

(3.11)

where q+(x) = max{q(x), 0}.
Now substituting (3.4)–(3.11 into the RHS of (3.3) and rearranging we obtain

ψ(β − h)w2 ≤ 7δ
8 ψw2 + C

R4
h4

(β − h)4 + C(δ)
R4 + C(δ)D4/3(α−1)|∇q|4/3

+C(δ)α2D2(α−1)(q+) + C(δ)μ2

R2 + C(δ)K2 + C(δ)
(τ − (t0 − T ))2

(3.12)

at (x1, t1). Since β − h ≥ δ > 0 and h/(β − h) ∈ (−1, 0) implies h4/(β − h)4 < 1, then (3.12) implies
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(ψw2)(x1, t1) ≤
7
8
ψw2 + C

R4 + C(δ)D3/4(α−1)|∇q|4/3 + C(δ)α2D2(α−1)(q+)

+C(δ)μ2

R2 + C(δ)K2 + C(δ)
n

(τ − (t0 − T ))2

≤ C(δ)
( 1
R4 + μ2

R2 + K2 + 1
(τ − (t0 − T ))2 + α2D2(α−1)‖q+‖2

L∞(QR,T )

+D4/3(α−1)‖∇q‖4/3
L∞(QR,T )

)
.

at (x1, t1). It follows that for all (x, t) ∈ QR,T , there holds

(ψ2w2)(x, τ) ≤ (ψ2w2)(x1, t1) ≤ (ψw2)(x1, t1)

≤ C(δ)
( 1
R4 + μ2

R2 + K2 + 1
(τ − (t0 − T ))2 + α2D2(α−1)‖q+‖2

L∞(QR,T )

+D4/3(α−1)‖∇q‖4/3
L∞(QR,T )

)
.

(3.13)

Note that ψ(x, τ) = 1 in QR/2,T/2 (by Lemma 2.2), w = |∇h|2/(β − h)2 (by definition) and the fact that 
τ ∈ (t0 − T, t0] was arbitrarily chosen, we have

|∇h|
(β − h) (x, t) ≤ C(δ)

( 1
R4 + μ2

R2 + K2 + 1
(τ − (t0 − T ))2 + α2D2(α−1)‖q+‖2

L∞(QR,T )

+D4/43α−1)‖∇q‖4/3
L∞(QR,T )

)1/4

≤ C(δ)
( 1
R

+
√

μ

R
+
√
K + 1√

(t− (t0 − T ))
+

√
αD1/2(α−1)‖q+‖1/2

L∞(QR,T )

+D1/3(α−1)‖∇q‖1/3
L∞(QR,T )

)
(3.14)

for all (x, t) ∈ QR/2,T ≡ B(x0, R/2) × [t0 − T, t0] with t = t0 − T . Since h = ln u/D, we have

|∇h|
(β − h) (x, t) =

( |∇u|
u

1
β − ln u/D

)
(x.t). (3.15)

By substituting (3.15) into (3.14) and rearranging we arrive at (1.8).
Case 2: For 0 < α < 1. In this case We have eh(α−1) > 1 since h is nonpositive. For the fourth term on 

the RHS of (3.3):

2
(β − h)2 (Deh)(α−1)ψ〈∇h,∇q〉 ≤ 2

(β − h)2M
(α−1)ψ|∇h||∇q|

≤ δ

8(ψ1/4w1/2)4 + C(δ)
(
ψ3/4

M
α−1 |∇q|

β − h

)4/3

≤ δ

8ψw
2 + C(δ)M 4

3 (α−1) |∇q|4/3
(β − h)4/3

≤ δ

8ψw
2 + C(δ)M 4

3 (α−1)|∇q|4/3.

(3.16)

For the fifth term on the RHS of (3.3): We have eh(α−1) > 1 since h is nonpositive. Since α ∈ (0, 1) (and 
similarly to the case α ≥ 1), we have

h

β − h
∈ (−1, 0), 1 − β

β − h
≤ 0 and 0 < α + h

β − h
+ 1 − β

β − h
≤ α.

Then
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2
[
α + h

β − h
+ 1 − β

β − h

]
(Deh)(α−1)qψw ≤ 2

[
α + h

β − h
+ 1 − β

β − h

]
M

(α−1)q+ψw

≤ δ

8ψw
2 + C(δ)

[
α + h

β − h
+ |1 − β|

β − h

]2(
M

(α−1)ψ1/2q+
)2

≤ δ

8ψw
2 + C(δ)α2

(
M

(α−1)ψ1/2q+
)2

≤ δ

8ψw
2 + C(δ)α2

M
2(α−1)(q+)2,

(3.17)

where q+(x) = max{q(x), 0}.
Similarly, putting (3.4)–(3.9 and (3.16)–(3.17 into the RHS of (3.3) and rearranging we obtain

ψ(β − h)w2 ≤ 7δ
8 ψw2 + C

R4
h4

(β − h)4 + C(δ)
R4 + C(δ)M4/3(α−1)|∇q|4/3

+C(δ)α2
M

2(α−1)(q+) + C(δ)μ2

R2 + C(δ)K2 + C(δ)
(τ − (t0 − T ))2

at (x1, t1). It then follows that for all (x, t) ∈ QR,T , there holds

(ψ2w2)(x, τ) ≤ (ψ2w2)(x1, t1) ≤ (ψw2)(x1, t1)

≤ C(δ)
( 1
R4 + μ2

R2 + K2 + 1
(τ − (t0 − T ))2 + α2

M
2(α−1)‖q+‖2

L∞(QR,T )

+M
4/3(α−1)‖∇q‖4/3

L∞(QR,T )

)
.

(3.18)

Following similar steps as before we arrive at (1.9).
Case 3: For α ≤ 0.
For the fourth term on the RHS of (3.3): We know that eh(α−1) > 1 since h is nonpositive and

2
(β − h)2 (Deh)(α−1)ψ〈∇h,∇q〉 ≤ 2

(β − h)2M
(α−1)ψ|∇h||∇q|

≤ δ

8(ψ1/4w1/2)4 + C(δ)
(
ψ3/4

M
α−1 |∇q|

β − h

)4/3

≤ δ

8ψw
2 + C(δ)M 4

3 (α−1) |∇q|4/3
(β − h)4/3

≤ δ

8ψw
2 + C(δ)M 4

3 (α−1)|∇q|4/3,

(3.19)

where M := inf{u(x, t) : for all (x, t) ∈ QR,T }.
For the fifth term on the RHS of (3.3): we know also that eh(α−1) > 1. By the condition β − h ≥ δ > 0

we have h ≤ β − δ,

h

β − h
≤ β

δ
− 1, 1 − β

β − h
≤ 1

δ
− β

δ
and α + h

β − h
+ 1 − β

β − h
≤ 1

δ
− 1 <

1
δ
.

Therefore

2
[
α + h

β − h
+ 1 − β

β − h

]
(Deh)(α−1)qψw ≤ 2

[
α + h

β − h
+ 1 − β

β − h

]
M

(α−1)q+ψw

≤ δ

8ψw
2 + C(δ)

[
α + h

β − h
+ |1 − β|

β − h

]2(
M

(α−1)ψ1/2q+
)2

≤ δ

8ψw
2 + C(δ)

(
M

(α−1)ψ1/2q+
)2

≤ δ

8ψw
2 + C(δ)M2(α−1)(q+)2,

(3.20)
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where q+(x) = max{q(x), 0} and M := inf{u(x, t) : for all (x, t) ∈ QR,T }. Similarly putting (3.4)–(3.9 and 
(3.19)–(3.20 into the RHS of (3.3), rearranging and following the same steps as before we obtain (1.10).

Now we consider the other situation: if x ∈ B(x0, 1). Here ψ is a constant in space direction in B(x0, R/2)
based on the assumption, where R ≥ 2. Thus at (x1, t1), we have from (3.3) for the case α ≥ 1 (Note that 
β − h ≥ δ and 0 < eh(α−1) ≤ 1)

w ≤ ψt

2ψ + (N − 1)K + 2
β − h

(Deh)α−1|∇q| + 2
[
α + h

β − h
+ 1 − β

β − h

]
(Deh)α−1(q+)

≤ C

τ − (t0 − T ) + (N − 1)K + C(δ)Dα−1|∇q| + αDα−1(q+),

where we have used (4) of Lemma 2.2. Since ψ(x, τ) = 1 when d(x, x0) < R/2 by (1) of Lemma 2.2, the last 
estimate indeed yields

w(x, τ) = (ψw)(x, τ) ≤ (ψw)(x1, t1)

≤ w(x1, t1)

≤ C

τ − (t0 − T ) + (N − 1)K + C(δ)Dα−1|∇q| + αDα−1(q+)

for all (x, t) ∈ QR/2,T with t = t0 − T . This proves the estimate (1.8). Similarly for the cases α ∈ (0, 1)
and α ≤ 0, we can easily obtain estimates (1.9) and (1.10) respectively. This concludes the proof of Theo-
rem 1.1. �
Proof of Theorem 1.2. To prove (1) of the Theorem, we only consider the case α ≥ 1 since the case α ≤ 1
is similar. Let 0< u(x, t) ≤ D be a positive ancient solution of (1.2) with u(x, t) = o([r(x)1/2 + |t|1/4])
near infinity. Fix any point (x0, t0) in space–time and let DR := supQ√

R,R
|u|. Considering the function 

U = u + 2D2R, we have D2R ≤ U(x, t) ≤ 3D2R, for ever (x, t) ∈ Q2
√
R,4R. Then using Theorem 1.1 for U

in the set B(x0, R) × [t0 −R2, t0], we have

|∇u(x0, t0)|
u(x0, t0) + 2D2R

≤C(δ, |μ|)
R

(
R

1
2

)
+ C(δ, α)o(R 1

2 (α−1))o(R− 1
2 (α−1))+

C(δ)o(R 1
3 (α−1))o(R− 1

2 (α−1))

near infinity. Since D2R = o(R) by assumption, it follows that |∇u(x0, t0)| = 0 by letting R → ∞. Since 
(x0, t0) is arbitrary, then ∇u(x, t) ≡ 0 and u must be constant in space, i.e., u(x, t) = u(t). Furthermore, 
from equation (1.2), we have q(x) = q̃ (a constant) and we obtain

du(t)
dt

= q̃uα(t) (3.21)

Integrating (3.14) in the interval (t, 0] with t < 0 we obtain

u1−α(t) = u1−α(0) + (1 − α)q̃t. (3.22)

We can then prove that q̃ = 0 which is a contradiction to the assumption that q(x) = 0. By the hypothesis 
(a) of the Theorem we have q̃ ≤ 0. Letting t → −∞, we have u1−α(t) < 0 (for α ≥ 1), which is impossible 
because u is a positive solution. Therefore q̃ = 0 is a contradiction to u = o([r1/2(x) + |t|1/4]) near infinity.

We prove (2) and (3) of the Theorem. For q(x) ≡ 0, (1.2) becomes the weighted heat equation (1.11. Let 
u(x, t) be an ancient solution of (1.11 with u = o([r1/2(x) + |t|1/4]) near infinity. Then from Theorem 1.1, 
we have ∇u ≡ 0 so u(x, t) = u(t). Then from (1.11 we have
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du(t)
dt

= 0

which implies that u is a constant. This completes the proof of Theorem 1.3. �
Proof of Theorem 1.3. Let γ(s), γ : [0, 1] → M , be the minimal geodesic connecting x and y such that 
γ(0) = x and γ(1) = y. Let h = ln u/D. By letting R → ∞ in Theorem 1.1 we have

|∇u|
u(β − ln u/D) ≤ C(δ)

( 1√
t− (t0 − T )

+
√
K + λ

)
,

where

λ := max{
√
αD

1
2 (α−1)‖q+‖1/2

L∞(QR,T ), D
1
3 (α−1)‖∇q‖1/3

L∞(QR,T )} for α ≥ 1,

λ := max{
√
αM

1
2 (α−1)‖q+‖1/2

L∞(QR,T ), M
1
3 (α−1)‖∇q‖1/3

L∞(QR,T )} for 0 < α < 1,

and

λ := max{M 1
2 (α−1)‖q+‖1/2

L∞(QR,T ), M
1
3 (α−1)‖∇q‖1/3

L∞(QR,T )} for α ≤ 0.

We now compute

ln β − h(x, t)
β − h(y, t) =

1∫
0

d ln(β − h(γ(s), t))
ds

ds

≤
1∫

0

|γ̇| |∇u|
u(β − ln u/D)ds

≤ C(δ)
( 1√

t− (t0 − T )
+
√
K + λ

)
r.

Denote by

Γ = Γ(r(x, y), t) := exp
(
− C(δ)

( 1√
t− (t0 − T )

+
√
K + λ

)
r
)

the above inequality implies

β − h(x, t)
β − h(y, t) ≤ 1

Γ .

Hence, with some straightforward computation, we obtain

u(y, t) ≤ u(x, t)Γ · (De)1−Γ

which concludes the proof. �
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