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ABSTRACT 

This paper deal with the optimal stochastic control principle and its’ application 

in formulating consumption model of a production company a case study of  

Landmark University development ventures (LMDV). Here Stochastic Differential 

Equations (SDE) is considered as an ordinary differential equations (ODE) driven by 

white noise and we justified the connection between the Ito’s integral and white noise 

in the case of non-random integrands interpreted as cost functions.  
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1. INTRODUCTION 

Optimal Stochastic principle via dynamic models and control system played vital roles in 

solving various problems in engineering, management and economics. It is used to examined 

and calculate the conditions of operation for an optimal industrial process to minimized the 

production cost and maximized both profits and efficiency. At the beginning of every fiscal 

year, each production firms do render their budgetary which normally includes both 

investment and production planning and their expected profits. Sethi and Lee (1981) applied 

the calculus of variation principle to solve a production investment model. Merton (1969) 

provides a nice introduction in the applications of optimal control theory to investment and 

production models using continuous time case.  Merton (1971) Derzko and Sethi (1981) 

introduces dynamics of economics and management models using stochastic version. Oladejo 

et.al  (2019) established optimal principle in solving over-allocation and under-allocation of 
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the classroom space using Linear Programming based on the data obtained from the 

examination and lecture timetable committee on the classroom facilities, capacities and the 

number of students per programme to maximize  the available classroom space and minimizes 

the congestion and overcrowding in a particular lecture room using AMPL software  Likewise 

Oladejo et.al (2019) Applied optimization principle in optimizing profits of a production 

industry using linear programming where they examine  and evaluate production costs to  

determine the optimal profit using secondary data collected from the records of the Landmark 

University Bakery on five types of bread produced in the firm where it was revealed through 

the application of AMPL software that Family loaf and the Chocolate bread contributed 

objectively to the profit. Hence, more of Family loaf and Chocolate bread are needed to be 

produced and sold in order to maximize the profit. 

Dockner and Feichtinger (1993) opined that optimal inter-temporal price and production 

decisions depending on the sum of the adjoint variable of the inventory level and the 

Lagrange multiplier of the state constraint by using the optimal control theory.  El-Gohary 

(2006) considered optimal investment problem for the Nerlove-Arrow model under a 

replenish-able budget where an optimal control problem with two state variables for the 

dynamics of this model and the optimal control is the rate of investment expenditure that is 

required to maximize the present value of net streams over an infinite time horizon subject to 

a replenish-able budget 

2. STOCHASTIC DIFFERENTIAL EQUATIONS 

We let our controlled stochastic differential equation (SDE) be of the form: 

    )()((,)(,)( tdwtxtdttxtftX 


     (1) 

With initial condition )0(x , this leads to integral equation of the form: 

    
t t

sdwsxsdssxsfxtx
0 0

).()(,)(,)0()( 
    (2) 

The solution )(tx  of the equation (2) gives the differential equation of the form: 
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 
     (3) 

Where 
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It is remarkable to note that equation (1) can be written as 

    xtxtftdx ,,)( 
     (6) 

Where   represent the white noise. 

Equation (1) can be interpreted as a scalar equation or as a vector equation. 

fx,  represent n vectors, w  represent r vector  

Where r , is the Wiener process serves as component and  represent rn   matrix. 
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By linearity, the scalar equation (1) can be read as: 

  .() dwxdtxX  


     (7) 

Where ,,,  and  are constants or time-dependent scalar. 

Equation (7) can be replaced in the linear case by 

   





r

i

iii dwxBbdtAxaX
1

'

    (8) 

Where iba,
 are vectors and iBA,

 represent matrices 

2.1. Stochastic Optimal Control Principle/Theory 

For any given system represented by a differential equation of the form; 

    ).(,,,,, tGdztuxfzuxtfdx ttttt 
    (9) 

An optimal control problem is specified by giving a performance criterion that grades the 

possible control function u  in order of preference by attaching a number )(uJ to anyone. 

)(uJ  is refers to and called the cost of u ,so that we can choose the control that minimizes 

it. If )(uJ  represents the profit then we can maximize it by minimizing Ju , meanwhile the 

distinction between the minimizing and maximizing is purely notational. 

In the optimal control theory, the type of cost function considered is almost invariably 

written as: 

  .)(,,)(
0 
T

ttt xGdtuxtHEuJ     (10) 

Where T  is infinite termination time and not fixed. 

In investments problems where tx  is the value of one’s asset. H represents the 

consumption rate, but in engineering perspective, H  is usually chosen to be the cost 

deviation from some desired trajectory of tx  or the use of too much control forces or energy.

)( txG  is the cost failure to reach some special target set at terminal. 

Many deterministic optimal control problems can be formulated in other to have a cost 

  ).(,,,
0

t

T

ttt xGdtzuxtH       (11) 

Solving the stochastic optimal control problems defined in the equations (10) and (11) 

We let ),( txV  refers to as the current value function be the expected value of the  

objective function of the equation (11) from t to :T  

  .)(,,,max),(  
T

t
t

u
xGdttzuxHEtxV

    (12) 

When an optimal policy is followed from t toT , 

Given 
.xX t   then by the optimality principle, 

    .,,,,max),( dttdxxVdttzuxHEtxV t
u


   (13) 



N.K Oladejo,O.Adebimpe, A. Abolarinwa, S.O Salawu, A.F Lukman and H.I Bukari 

http://www.iaeme.com/IJMET/index.asp 1344 editor@iaeme.com 

Applying Taylor’s expansion we get; 

        dtdxVdtVdxVdxVdtVtxVdttdxxV txttttxxtxtt
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Using the equation (10) we write formally thus: 

.2)()()( 2222

2

dtfGdzdzGdtftX tt 






 

    (15) 

  ..
2

dtGdzdtftdtdx t
     (16) 

Here, it is sufficient to know the multiplication rules of the stochastic calculus 

Thus:
    .0,0,

22
 dtdtdzdtdz tt      (17) 

Substitute from the equation (14) into the equation (13), apply the equations (10),  

(11) and equation (12) we get: 
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Conceding the term ),( txV  on both sides of the equation (18), dividing the remainder by

dt  
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For the current value function ),( txV , with the boundary condition 

),(),( TxSTxV       (20) 

3. APPLICATION OF OPTIMAL STOCHASTIC TO CONSUMPTION 

MODEL 

Here we formulate the deterministic consumption model. We assume that )(tw  denotes the 

wealth at time t , which represents the state variable, and )(tC  is the rate of consumption, 

which represents the control variable at time t . 

From the differential equation of the form: 

0)0(),()()( wwtCtrwtdw 
     (21) 

Where r is the compounded rate.  

We formulate the optimal control problem of the form: 

  
 

T
Tt TBWedttCIneJ

0
)()(max 

    (22) 
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0)(,)0(, 0  TwwwCrwdw
    

(23) 
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Where T is the time, B is constant, )(TW  denote the wealth. 

We let 0R  be the initial price of an investment, r the interest rate and tR  be an  

accumulated changing rate at time t  

Then, 

)0(, 0 RRrR
dt

dR
dR t

t

t 
      (24) 

By applying separation of variable method, the equation yields; 

,dtrRdR tt         
)0(0 RR 

     (25) 

Solving, we get the accumulated amount as a fraction of time; 

Thus;  
rt

t eRR 0  

[11] and [12] suggested that the stock price tp   can be formulated by Ito’s 

Stochastic differential equation of the form: 

tttt dzpdtpdp  
         

)0(0 pp 
     (26) 

Where  represents the expected value of the return rate on stock, 2  is the variance  

associated with the return and tz  represents a standard wiener process. 

3.1. Parameters use in Stochastic Optimal Model 

We considered the following parameters to formulate the stochastic optimal control 

model. 

 xYt  The wealth at time t  

tK  The consumption rate at time t   

tZ  The fraction of the wealth invested in stock at time t  

 tZ1 The fraction of the wealth in saving account at time t  

cV  The utility of consumption at consumption rate c  

  The discount rate applied to consumption utility. 

B The bankruptcy parameter 

We develop the dynamics of the consumption model and consider the wealth equation of 

the form: 

  tttttttt dzYZdtKrYYZrdY   )()(
   

)0(0 YY 
   (27) 

Where 

dtYZ tt  is the expected return from the risky investment ttYZ  at time t  to dtt  . 

dtYZ tt  is the risk involved in investing ttYZ  in the stock.  

dtYZr tt )1( 
 is the amount of interest earned on the balance of tt YZ )1( 

. 

dtK t  is the amount of consumption during the time interval from t  to dtt  . 

Equation (27) show that one can trade continuously in time without incurring any broker’s 

commission and the changes tdY  in wealth from t  to dtt   is due to the gain from changes in 

share and consumption. 
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We then formulate the problem of optimal control of stochastic consumption model as. 




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Subject to; 

  tttttttt dzYZdtKrYYZrdY   )()(
,

)0(0 YY 
,
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  (29) 

The bankruptcy parameter denoted by B  can be positive if there is a social welfare system 

in place and can also be negative if there is a remorse associated with bankruptcy. 

We let )(xV  be the value function associated with an optimal policy with xYt   at time t . 

Then, the Hamilton-Jacobi-Bellman equation satisfied by the value function )(xV  is of the 

form: 
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Differentiating equation (30) with respect to Q  and C , equating it to zero yield: 
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Solving equation (33) with respect to the function )(xZ  and )(xK  
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Substituting equations (35) and (34) into the equation (30) yields; 
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Where  

2

2

2

)(






r
  

4. SOLUTION TO STOCHASTIC CONSUMPTION MODEL 

The nonlinear ordinary differential equation (18) was solved and it takes the form: 
DbxaInxV  )()(

       (37) 

Where Da,  are constant and determined by: 
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2 1
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Find the constants Dba ,, by substituting equations (38) and (37) into the equation (36). 

Thus; 
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And the solution to the equation (65) is given as: 
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r
xInxV

     

 (40) 

Substituting equation (40) into the equation (34) by calculation, the wealth invested in the 

stock is;  

2

 r
Z




      

 (41) 

Then, the optimal consumption rate Vc  is; 
xV        

(42) 

5. NUMERICAL EXAMPLES 

Here we find the optimal consumption rate and the fraction of the wealth invested in the 

stock 

Example 1 Given that the utility against consumption rate VVc  .Table1 below shows 

the expected current values against rate level of the utility with consumption rate and Fig 1 

shows the expected optimal inventory level against time  

Table 1 

R Va[x] Vb[x] Vc[x] 

0 0.08267 0.30145 0.080262 

10 0.08367 0.31745 0.080956 

20 0.08467 0.33345 0.081656 

30 0.08567 0.34945 0.082346 

40 0.08667 0.36545 0.083039 

50 0.08767 0.38145 0.083734 

60 0.08867 0.39745 0.084429 

 

Figure 1 Show the expected optimal inventory level against time  
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Table 2 below shows the expected current values against the discount rate applied to 

consumption utility and Fig 2 shows the expected optimal inventory level against discounted 

rate  

Table 2 

𝜸 Va[x] Vb[x] Vc[x] 

0 0.460517 0.405045 0.080171 

10 0.560517 0.430045 0.081171 

20 0.660517 0.455045 0.082171 

30 0.760517 0.480045 0.083171 

40 0.860517 0.505045 0.084171 

50 0.960517 0.530045 0.085171 

 

Figure 2 

Table 3 below shows the total expected current values against the utility of consumption 

at consumption rate and Fig. 3 shows the expected optimal inventory level against the utility 

of consumption at consumption rate  

Table 3 

𝝆 Va[x] Vb[x] Vc[x] 

1 21.30258 66.9957 58.6052 

2 5.997866 17.5944 15.8992 

3 3.02262 8.2537 7.679 

4 1.92221 4.908 4.6854 

5 1.3824 3.321 3.2429 

 

Figure 3 
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5.2. Discussion and Interpretation 

From table 1 and Fig 1, as the current values showed against the rate level of the utility with 

consumption rate increases, then the expected optimal inventory level against time slightly 

increases. Likewise in table 2 and Fig. 2 as the expected current values against the discount 

rate applied to consumption utility then, the expected optimal inventory level against 

discounted rate also increases .Meanwhile in table 3 and Fig 3 indicates that the total expected 

current values against the utility of consumption at consumption rate decreases as then, the 

expected optimal inventory level against the utility of consumption at consumption rate  also 

decreases 

6. CONCLUSION 

We have successfully examined the optimal stochastic control principle and its’ application in 

formulating consumption model  of  Landmark University development ventures (LMDV) 

using Stochastic Differential Equations (SDE) as an ordinary differential equations (ODE) 

driven by white noise and we justified the connection between the Ito’s integral and white 

noise in the case of non-random integrands interpreted as cost functions. The inventory level 

and consumption are seeing clearly to be stochastic in nature and demand rate is equally 

seeing to be deterministic in nature. Numerical illustrative examples used for stochastic 

consumption model were to displays the optimal expected inventory level E(x) against time 

(t) and the expected current values E(v) against time (t). 
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