
Contents lists available at ScienceDirect

Chemico-Biological Interactions

journal homepage: www.elsevier.com/locate/chembioint

The oral administration of silver nanoparticles activates the kynurenine
pathway in rat brain independently of oxidative stress

Oluyomi Stephen Adeyemia,*, Rhoda Ananu Ulokoa, Oluwakemi Josephine Awakana,
Anne Adebukola Adeyanjub, David Adeiza Otohinoyic

aMedicinal Biochemistry, Nanomedicine and Toxicology Laboratory, Department of Biochemistry, Landmark University, PMB 1001, Km 4, Ipetu Road, Omu-Aran,
251101, Nigeria
bDepartment of Biological Sciences, McPherson University, Seriki-Sotayo, Ogun State, Nigeria
c School of Medicine, All Saints University, Hillsborough Street, Roseau, Dominica

A R T I C L E I N F O

Keywords:
Inorganic nanoparticles
Medicinal biochemistry
Nanomedicine
Nanotoxicity
Reactive oxygen species
Tryptophan metabolism

A B S T R A C T

In this work, we determined whether oxidative stress contributed to the activation of the kynurenine pathway by
AgNPs. Male Wistar rats weighing between 130 and 146 g were randomly assigned into six groups. Animals in
the negative control group were orally administered distilled water while, the other treatment groups were
respectively given AgNPs (25 and 50mg/kg bw) alone or in combination with Trolox (100mg/kg bw). Results
showed that treatments with AgNPs significantly raised protein carbonyl level in rat liver, but the co-treatment
with Trolox attenuated the elevation. Conversely, AgNPs raised the level of reduced glutathione (GSH) in rat
plasma and tissues compared to the negative control. Further, oral exposure to AgNPs (50mg/kg bw) sig-
nificantly elevated rat plasma and brain kynurenine levels compared to the negative control. Meantime, the co-
treatment with Trolox appreciably restored kynurenine level in rat plasma, but not in the rat brain. Taken
together, findings indicate that the oral administration of AgNPs alone at the doses used in this study, might not
have caused oxidative stress. However, the co-treatment with Trolox appears to potentiate oxidative stress in rats
following exposure to AgNPs. Furthermore, data support that the activation of the kynurenine pathway in the rat
brain by AgNPs might be independent of oxidative stress. The findings are new and contribute to deepen our
understanding of the cellular interaction by nanoparticles.

1. Introduction

The use of nanoparticles and/or nanomaterials is rapidly expanding.
Nanoparticles are being deployed for several biomedical applications;
drug delivery systems, cellular targeting and imaging, fluorescence
imaging and as antibacterial or antimicrobial agents [1–3]. For ex-
ample, the silver nanoparticles are known to have antibacterial activ-
ities and can therefore be used as antibacterial agents or as broad-
spectrum antimicrobials against bacteria, viruses and other micro-
organisms [4,5]. Interestingly, the small size and the large ratio of
surface area to the volume of these nanoparticles make them more re-
active, and they can easily penetrate cells and interact with biomole-
cules in a number of ways [6,7]. In the event of cellular uptake, na-
noparticles can interact with several cellular biomolecules leading to
oxidative stress, inflammatory response and/or apoptosis [8,9]. That
nanoparticles facilitate the generation of free radicals, particularly re-
active oxygen species (ROS) with potential to cause oxidative damage

of cellular materials is well reported [1,10]. Nevertheless, our knowl-
edge and understanding of the cellular interactions and/or effect by
nanoparticles are still infant. However, emerging evidence indicates
that inorganic nanoparticles particularly silver and gold nanoparticles
have multiple cellular targets among which is the activation of the
kynurenine pathway (the degradation product of L-tryptophan meta-
bolism) [11].

Briefly, oxidation of L-tryptophan to kynurenine is catalyzed by the
indoleamine 2,3-dioxygenase (IDO), while the non-enzymatic cycliza-
tion of kynurenine forms the quinolinate, which in turn can be con-
verted to niacin. On the other hand, L-tryptophan can be transformed to
form serotonin (neurotransmitter), which can be metabolized further to
produce melatonin (neuro-hormone) [12]. Investigations have revealed
that oxidative stress resulting from ROS production can affect the im-
mune activity and neurotransmitter levels by influencing neuro-
transmitter synthesis [13]. Free radicals can stimulate the adaptive
immune response in manners that may significantly impact on the L-
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tryptophan metabolism. During the adaptive immune response, there is
an increase in pro-inflammatory cytokines and one of the functions of
these immune messengers is to increase activity of IDO. When IDO
activity is increased, there is less L-tryptophan available for making
serotonin. Low serotonin levels have been associated with clinical
symptoms such as depression, insomnia, and anxiety. Together, these
facts linked oxidative stress to the activation of the kynurenine pathway
[13], however, we do not know yet how these cellular targets relate in
the presence of nanoparticles. Our understanding would be enhanced if
we know how nanoparticles activate the kynurenine pathway. There-
fore, this work attempted to determine whether AgNPs activate the
kynurenine pathway by causing oxidative stress in Wistar rats.

2. Materials and methods

2.1. Chemical and reagents

Silver nanoparticles (AgNPs) was gifted by the Nanomedicine
Research Group at the National Research Center for Protozoan Diseases
(NRCPD), Obihiro University of Agriculture & Veterinary Medicine,
Obihiro, Japan. Trolox, kynurenine standard and Ehrlich reagents were
products of Sigma (St. Louis, MO, USA). All other reagents were of
analytical grade and used as supplied.

2.2. Experimental animals

Twenty-four male Wistar rats with an average weight between 130
and 146 g were used for this study. Animals were sourced from the
Department of Biochemistry, University of Ilorin, Ilorin, Nigeria. The
rats were housed in plastic cages under a well-ventilated condition and
allowed to acclimate for two weeks before the commencement of the
study. Rats were fed with the commercial rat pellet and were given
unlimited access to clean water.

2.2.1. Ethics statement
Handling and treatment of animals were humane and consistent

with the International Guiding Principles for Biomedical Research
Involving Animals, Geneva, Switzerland [14]. This was under the ob-
servation of the local Institutional Ethics Committee on Scientific Re-
search with approval and protocol 05022018.

2.2.2. Animal grouping and treatment protocol
The animals were randomly distributed into six (6) groups of four

(4) rats in each group. The rats were given oral administration of silver
nanoparticles singly or in combination with Trolox. Further details of
the treatment protocols are shown below;

Negative control: Administered 1ml of distilled water.
AgNPs 25mg/kg: Administered AgNPs at 25mg/kg bw only.
AgNPs 50mg/kg: Administered AgNPs at 50mg/kg bw only.
AgNPs 25 mg/kg + TRO: Administered AgNPs (25 mg/kg bw) plus

Trolox (100 mg/kg bw).
AgNPs 50 mg/kg + TRO: Administered AgNPs (50 mg/kg bw) plus

Trolox (100 mg/kg bw).
TRO 100mg/kg: Administered Trolox (100mg/kg bw) only.
Silver nanoparticles were prepared in distilled water and the

treatment was daily for seven days. The selection of doses was premised
on previous studies [1,15].

2.2.3. Preparation of plasma and tissue homogenates
Animals were fasted overnight after the last treatment and were

sacrificed under mild anesthesia using diethyl ether. Blood samples
from the rats were collected in clean EDTA bottles and these were
centrifuged using a table-top centrifuge (model C5, LW Scientific, GA,
USA) at 5000 rpm for 10min to yield plasma. The plasma was collected
in plain sample bottles and stored frozen until needed for biochemical
analysis. The brain and liver samples were excised, cleaned and

homogenized in ice-cold 0.25M sucrose solution. The tissue homo-
genates were used for the determination of biochemical indices.

2.3. Biochemical assays

Biochemical determinations in rat plasma and tissue homogenates
were carried out on a UV/Vis spectrophotometer (Jenway,
Staffordshire, United Kingdom) where applicable. The total protein was
determined by using the method described by Gornall et al. [16], while
protein carbonyl level was estimated by the method described by Cas-
tegna et al. [17]. Malondialdehyde as a byproduct of lipid peroxidation
was assayed as previously described by Varshney and Kale [18]. The
kynurenine level was determined as previously reported elsewhere
[11]. The level of reduced glutathione (GSH) was determined by using
the method described by Bentler et al. [19], while the diphenylalanine
assay (DPA) was used to determine DNA fragmentation as previously
reported elsewhere [20].

2.4. Statistical analysis

Data were analyzed using the one-way ANOVA (GraphPad Software
Inc., San Diego, CA, USA) and presented as mean value of four re-
plicates ± standard error of mean (SEM). Differences among the group
mean values were determined by the Tukey's post-hoc test. Mean values
at p < 0.05 were considered to be significant.

3. Results

3.1. AgNPs showed no detectable effect on rat average weight

The oral administration of AgNPs as well as the co-treatment with
Trolox had no appreciable effect on average weight of rats when
compared to the negative control. The rat average weight before and
after the treatment courses was not significantly different (Fig. 1a and
b).

3.2. AgNPs mildly altered rat brain and liver total protein levels

The oral treatment at both low and high doses of AgNPs as well as in
the combined treatment with Trolox did not significantly affect rat
plasma total protein (Fig. 2a). However, total protein levels in rat brain
and liver were decreased (p < 0.05) following oral exposure to AgNPs
(50mg/kg bw), but were restored by the co-treatment with Trolox
(Fig. 2b and c).

3.3. AgNPs activated the kynurenine pathway in rat brain independently of
oxidative stress and/or ROS production

The AgNPs appear to cause a dose-dependent increase in kynur-
enine levels in rat brain and plasma, but showed no detectable effect on
the rat liver kynurenine level (Fig. 3a–c). In particular, oral exposure to
AgNPs (50mg/kg bw) elevated (p < 0.05) rat brain and plasma ky-
nurenine levels. Interestingly, oral exposure to AgNPs (50mg/kg bw) in
combination with Trolox (100mg/kg bw) successfully modulated the
elevation of kynurenine in rat plasma and not in the brain. This may
likely indicate exclusion of oxidative stress in the activation of the
kynurenine pathway by AgNPs in the rat brain.

3.4. AgNPs mildly elevated oxidative stress indices

In order to evaluate whether AgNPs caused oxidative stress, protein
carbonyl and malondialdehyde (the measure of lipid peroxidation)
were determined in rat plasma and tissues. Oral exposure to AgNPs
mildly caused a dose-dependent increase in rat plasma protein carbonyl
levels compared to the negative control (Fig. 4a). Meanwhile, the co-
treatment with Trolox appeared to potentiate the capacity of AgNPs to
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elevate rat plasma protein carbonyl levels. In rat liver, protein carbonyl
level was inconsistently altered; AgNPs (25mg/kg bw) caused a sig-
nificant increase in protein carbonyl level, but this was restored by the
co-treatment with Trolox (Fig. 4b). In rat brain, oral exposure to AgNPs
alone decreased protein carbonyl level compared to the negative con-
trol (Fig. 4c). But again, the co-treatment with Trolox potentiated the
capacity of AgNPs to elevate protein carbonyl level.

The oral exposure to only AgNPs at both low and high doses had no
appreciable effect on malondialdehyde level in rat plasma compared
with the negative control (Fig. 5a). However, the co-treatment with
Trolox increased malondialdehyde level for AgNPs (50mg/kg bw). The
oral exposure to either AgNPs alone or the co-treatment with Trolox
inconsistently altered rat liver and brain malondialdehyde levels,
though these alterations were not statistically significant (Fig. 5b and
c). Furthermore, evaluation for DNA fragmentation as part of measure
to assess oxidative cellular damage revealed that the oral exposure to
either AgNPs singly or in combination with Trolox had no detectable
adverse effect on rat brain DNA (Fig. 6). Actually, the oral exposure to
AgNPs singly and in combination with Trolox showed lower but non-
significant DNA fragmentation % compared with the negative control.

3.5. AgNPs elevated levels of reduced glutathione (GSH) in rat brain and
plasma

In order to preliminarily assess the antioxidant status of

experimental animals, level of GSH was determined in rat plasma and
tissues. The oral exposure to either AgNPs singly or in combination with
Trolox caused elevation (p < 0.05) in rat plasma GSH level compared
to the negative control (Fig. 7a). In rat liver, GSH level was not ap-
preciably affected by the oral exposure to either AgNPs alone or in
combination with Trolox (Fig. 7b). However, rat brain GSH level was
significantly elevated following the oral exposure to either AgNPs alone
or in combination with Trolox (Fig. 7c).

3.6. Proposed mechanism for activation of rat brain kynurenine by AgNPs

Several investigations have established that oxidative stress [13,21]
and production of cytokines such as IFN-γ [22] have potential to acti-
vate the kynurenine pathway, as illustrated in Fig. 8. Meantime, AgNPs
is capable of causing oxidative stress and/or producing ROS [10,15], as
well as activating the kynurenine pathway [11,23]. However, findings
in this work indicate that AgNPs might have activated rat brain ky-
nurenine pathway through alternative route that precludes oxidative
stress (Fig. 9).

4. Discussion

Although, the use of AgNPs for biomedical purposes is steadily in-
creasing and has been gaining wider attraction [23], the limited
knowledge about cellular targets or interaction of nanoparticles

Fig. 1. Effect of oral administration of silver nanoparticles (AgNPs) on rat average weight; [A] Before experimental treatments and [B] After experimental treatments.
Data are presented as mean value of four replicates ± standard error of mean (SEM).

Fig. 2. Effect of oral administration of silver nanoparticles (AgNPs) on rat total protein level; [A] Rat plasma, [B] Rat liver and [C] Rat brain. Data are presented as
mean value of four replicates ± standard error of mean (SEM). α is significant at p < 0.05 versus AgNPs (50 mg/kg + TRO).
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remains a challenge that impedes full exploration of the biomedical
prospects of nanotechnology. Nonetheless, recent investigations suggest
that nanoparticles have multiple cellular targets, among which are the
activation of the kynurenine pathway as well as the production of re-
active oxygen species (ROS) leading to oxidative stress [1,10,11,23].
Interestingly, ROS and/or oxidative stress has been strongly linked with
the oxidative degradation of L-tryptophan to form kynurenine [21].
However, we do not know yet whether AgNPs activates the kynurenine
pathway by facilitating oxidative stress and/or ROS production.
Therefore, in this work, we examined the involvement of oxidative
stress in relation to the activation of the kynurenine pathway by AgNPs
in Wistar rats.

Our results showed that AgNPs elevated kynurenine levels in rat
plasma and brain and not in the rat liver. This finding is supportive of
and confirms our earlier report which demonstrated the capacity of
inorganic nanoparticles to activate the kynurenine pathway in vitro
[11]. That AgNPs failed to elevate kynurenine levels in rat liver could
be that TDO which is majorly responsible for L-tryptophan degradation
in liver was not activated and/or inhibited by AgNPs or its metabolites.
Meantime, studies have shown that inflammation and oxidative stress
are among factors that facilitate the oxidative breakdown of L-trypto-
phan through the kynurenine pathway [21]. Although, the activation of
the kynurenine pathway has been linked with oxidative stress [13], our
results in this work indicated that AgNPs might have activated the rat
brain kynurenine pathway independently of oxidative stress and/or

ROS production. This is more plausible if we consider that the co-
treatment of AgNPs with Trolox failed to appreciably modulate rat
brain kynurenine level. That the co-treatment with Trolox antioxidant
failed to restore the kynurenine level in rat brain underscores the ex-
clusion of oxidative stress in the activation of the kynurenine pathway
by AgNPs. Conversely, the co-treatment with Trolox restored the rat
plasma kynurenine level comparable to that of negative control. This
finding did not only suggest culpability of oxidative stress in the acti-
vation of the rat plasma kynurenine pathway, but also implicated that
AgNPs may affect cellular targets differently depending on localization
within the cells. This line of thought would conform with and support
our earlier report which showed that metal nanoparticles have multiple
cellular targets [11]. Considered together, our data indicated that
AgNPs might have activated the rat brain kynurenine pathway through
an alternative route that precludes oxidative stress. In addition, sepa-
rate studies have shown that the activation of the kynurenine pathway
could be driven by cytokine production, particularly interferon-gamma
(IFN-γ) [22]. Although in the present study, we did not investigate IFN-
γ in relation to the activation of the kynurenine pathway by AgNPs,
nevertheless, AgNPs is immunogenic [2] and upregulates production of
IFN-γ [24]. Therefore, it is within the realm of possibility that AgNPs
activated rat brain kynurenine viz-a-viz upregulation of IFN-γ.

Furthermore, our results in this work revealed that the oral exposure
to AgNPs might not have caused oxidative stress in rat plasma and
tissues; the oxidative stress indices in rat plasma and tissues were not

Fig. 3. Effect of oral administration of silver nanoparticles (AgNPs) on rat kynurenine level; [A] Rat plasma, [B] Rat liver and [C] Rat brain. Data are presented as
mean value of four replicates ± standard error of mean (SEM). α is significant at p < 0.05 versus negative control and/or AgNPs (50 mg/kg + TRO), β at
p < 0.001 versus negative control, γ at p < 0.0001 versus negative control.

Fig. 4. Effect of oral administration of silver nanoparticles (AgNPs) on rat protein carbonyl level; [A] Rat plasma, [B] Rat liver and [C] Rat brain. Data are presented
as mean value of four replicates ± standard error of mean (SEM). α is significant at p < 0.05 versus negative control and/or AgNPs (25 mg/kg + TRO), β at
p < 0.001 versus AgNPs (50 mg/kg + TRO), γ at p < 0.0001 versus negative control and/or AgNPs (50 mg/kg + TRO).
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significantly different from those of negative control. Conversely, the
co-treatment with AgNPs and Trolox elevated rat plasma and brain
levels of lipid peroxidation and protein carbonyl. This finding may in-
dicate a modulating effect of Trolox on AgNPs. It is likely that Trolox

potentiated the effect of AgNPs towards increasing the indices of oxi-
dative stress in rat plasma and brain. Taken together, data support that
AgNPs did not cause oxidative stress at the doses investigated in this
study. Moreover, oral exposure to AgNPs alone or in combination with
Trolox had no detectable effect on rat brain DNA. Indeed, the oral ex-
posure to AgNPs singly and in combination with Trolox might have

Fig. 5. Effect of oral administration of silver nanoparticles (AgNPs) on rat malondialdehyde (MDA) level; [A] Rat plasma, [B] Rat liver and [C] Rat brain. Data are
presented as mean value of four replicates ± standard error of mean (SEM). α is significant at p < 0.05 versus negative control.

Fig. 6. Effect of oral administration of silver nanoparticles (AgNPs) on rat brain
DNA. Data are presented as mean value of four replicates ± standard error of
mean (SEM).

Fig. 7. Effect of oral administration of silver nanoparticles (AgNPs) on rat reduced glutathione (GSH) level; [A] Rat plasma, [B] Rat liver and [C] Rat brain. Data are
presented as mean value of four replicates ± standard error of mean (SEM). α is significant at p < 0.05 versus negative control, β at p < 0.001 versus negative
control, γ at p < 0.0001 versus negative control.

Fig. 8. Illustration of kynurenine activation as demonstrated by existing in-
vestigations (Badawy, 2017; Myint and Kim, 2014, Karu et al., 2016).
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protected rat brain DNA against occasional damage as there was lower
% DNA fragmentation recorded compared to the negative control.
Additionally, we found that GSH level as marker of antioxidant status
was significantly elevated in rat plasma and brain following the oral
exposure to AgNPs. The elevation of GSH in rat plasma and brain could
be an adaptive mechanism in response to AgNPs exposure. The elevated
GSH level in these rat tissues may also explain the absence of oxidative
stress. Generally, GSH forms part of the cellular non-enzymatic anti-
oxidant defense system that counteracts effect of free radical assaults
[25,26]. Therefore, the elevated GSH levels in rat plasma and brain
might buffer against likely oxidative stress resulting from the oral ex-
posure to AgNPs.

In conclusion, our data indicate that the oral exposure to AgNPs
elevated kynurenine level in rat plasma and brain. Further, the eleva-
tion of kynurenine level in rat plasma and not rat brain was susceptible
to modulation and amelioration by the co-treatment with Trolox. Taken
together, our finding suggests that the activation of the kynurenine
pathway in rat brain was independent of oxidative stress. In addition,
data also suggest potentiating effect of Trolox on AgNPs exposure in
manners that caused oxidative stress in rat plasma and tissues. Taken
together, the findings are not only new but will contribute to deepen
our understanding of the cellular interaction of nanoparticles.
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