Editorial Board

Editor in Chief
PhD Professor Laura GAVRILĂ (formerly ŞTEFĂNESCU)

Managing Editor
PhD Associate Professor Mădălina CONSTANTINESCU

Executive Editor
PhD Professor Ion Viorel MATEI

International Relations Responsible
PhD Pompiliu CONSTANTINESCU

Proof – readers
PhD Ana-Maria TRANTESCU – English

Redactors
PhD Cristiana BOGDĂNOIU
PhD Sorin DINCĂ
PhD Loredana VĂCĂRESCU-HOBEANU

European Research Center of Managerial Studies in Business Administration
http://www.cesmaa.eu
Email: jaes_secretary@yahoo.com
Web: http://cesmaa.eu/journals/jaes/index.php
Editorial Advisory Board

Claudiu ALBULESCU, University of Poitiers, France, West University of Timișoara, Romania
Aleksander ARISTOVNIK, Faculty of Administration, University of Ljubljana, Slovenia
Muhammad AZAM, School of Economics, Finance & Banking, College of Business, Universiti Utara, Malaysia
Cristina BARBU, Spiru Haret University, Romania
Christoph BARMEYER, Universität Passau, Germany
Amelia BĂDICĂ, University of Craiova, Romania
Gheorghe BICĂ, Spiru Haret University, Romania
Ana BOBÎRCĂ, Academy of Economic Science, Romania
Anca Mădălina BOGDAN, Spiru Haret University, Romania
Giacommo di FOGGIA, University of Milano-Bicocca, Italy
Jean-Paul GAERTNER, l'Institut Européen d’Etudes Commerciales Supérieures, France
Shankar GARGH, Editor in Chief of Advanced in Management, India
Emil GHIŢĂ, Spiru Haret University, Romania
Dragoș ILIE, Spiru Haret University, Romania
Cornel IONESCU, Institute of National Economy, Romanian Academy
Elena DOVAL, Spiru Haret University, Romania
Camelia DRAGOMIR, Spiru Haret University, Romania
Arvi KUURA, Pärnu College, University of Tartu, Estonia
Rajmund MIRDALA, Faculty of Economics, Technical University of Košice, Slovakia
Piotr MISZTAL, Technical University of Radom, Economic Department, Poland
Simona MOISE, Spiru Haret University, Romania
Mihail Cristian NEGULESCU, Spiru Haret University, Romania
Marco NOVARESE, University of Piemonte Orientale, Italy
Rajesh PILLANIA, Management Development Institute, India
Russell PITTMAN, International Technical Assistance Economic Analysis Group Antitrust Division, USA
Kreitz RACHEL PRICE, l’Institut Européen d’Etudes Commerciales Supérieures, France
Mohammad TARIQ INTEZAR, College of Business Administration Prince Sattam bin Abdul Aziz University (PSAU), Saudi Arabia
Andy ŞTEFĂNESCU, University of Craiova, Romania
Laura UNGUREANU, Spiru Haret University, Romania
Hans-Jürgen WEILSBACH, University of Applied Sciences - Frankfurt am Main, Germany
Journal of Applied Economic Sciences

Journal of Applied Economic Sciences is a young economics and interdisciplinary research journal, aimed to publish articles and papers that should contribute to the development of both the theory and practice in the field of Economic Sciences.

The journal seeks to promote the best papers and researches in management, finance, accounting, marketing, informatics, decision/making theory, mathematical modelling, expert systems, decision system support, and knowledge representation. This topic may include the fields indicated above but are not limited to these.

Journal of Applied Economic Sciences be appeals for experienced and junior researchers, who are interested in one or more of the diverse areas covered by the journal. It is currently published quarterly in 2 Issues in Spring (30th March), Summer (30th June), Fall (30th September) and Winter (30th December).

The journal will be available on-line and will be also being distributed to several universities, research institutes and libraries in Romania and abroad. To subscribe to this journal and receive the on-line/printed version, please send a request directly to jaes_secretary@yahoo.com.
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tomáš DUDÁŠ, Klaudia KARELOVÁ - Countries</td>
</tr>
<tr>
<td>2. Alexander CHURSIN, Pavel DROGOVOZ, Tatiana SADOVSKAYA, Vladimir SHIBOLDENKO - A Linear Model of Economic and Technological Shocks in Science Intensive Industries</td>
</tr>
<tr>
<td>3. Leoš ŠAFÁŘ, Mariann SINICAKOVA - Money Supply Influence on Gross Domestic Product throughout Stock Markets in United States and European Union</td>
</tr>
<tr>
<td>5. M. Shabri Abd. MAJID, Abdul HAMID, FARADILLA - Assessing the Productivity of Insurance Companies in Indonesia: A Non-Parametric Approach</td>
</tr>
<tr>
<td>6. Olga Victorovna KITOVA, Ludmila Pavlovna DYAKONOVA, Victoria Michailovna SAVINOVA, Sergey Naymovich BRUSKIN, Tamara Petrovna DANKO, Vladimir Dmitriyevich SEKERIN - About the System of Hybrid Forecast Models for Regional Situational Centers</td>
</tr>
<tr>
<td>8. Tomáš VALENTINY, Jaroslav GONOS, Veronika TIMKOVÁ, Martina KOŠÍKOVÁ - Impact of Selected Factors on the Formation of Regional Disparities in Slovakia</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>
Examining the Nigerian Stock Market Efficiency: Empirical Evidence from Wavelet Unit Root Test Approach

Lawal Adedoyin ISOLA
Department of Accounting and Finance
Landmark University, Omu Aran, Nigeria
lawal.adedoyin@lmu.edu.ng

Tony Ikechukwu NWANJI
Department of Accounting and Finance
Landmark University, Omu Aran, Nigeria
tony.nwanji@lmu.edu.ng

Ibrahim Joseph ADAMA
Department of Economics
Landmark University, Omu Aran, Nigeria
ibrahimjoseph@lmu.edu.ng

Adegbola O. OTEKUNRIN
Department of Accounting and Finance
Landmark University, Omu Aran, Nigeria
adegbolaotekunrin@lmu.edu.ng

Suggested Citation:

Abstract:
This study examines the Efficient Market Hypothesis (EMH) using data sourced on monthly bases on the Nigerian Stock Market. We employed recently developed frequency domain wavelet-based unit root test as well as two-time domain unit root tests that accommodates structural breaks. The results show that when frequency domain was factored into stock market efficiency framework for the Nigerian stock market, evidence abound to reject the null hypothesis, whereas no evidence not to do so with conventional time domain estimation techniques. The study recommends that investors should take advantage of the arbitrage opportunity that exist in the market; and that policy makers should see the stock market as a good platform that can aid economic growth as its vibrant arbitrage activities can attracts substantial fund for economic growth.

Keywords: efficient market hypothesis; wavelet unit root test; random walk; mean reversion; Nigeria.

JEL Classification: G10; G11; G14; C22; C32

Introduction
Economics and finance researchers have in the recent put considerable efforts to better understanding of emerging economics stock markets with special focus on markets efficiency. This is premised on the fact that inefficient stock market is very crucial to the promotion of higher economic growth (Tiwari and Kyophilavong 2014). At best, the results on market efficiency, can be described as mixed, for instance, Kavussanos and Dockery 1996, Lo and Mackinlay 1988, Al-Loughani and Chappell 1997, Poterba and Summers 1998, Grieb and Reyes 1999, Chaudhuri and Wu 2003, Narayan 2006, 2008, Hasanov 2009, Lawal et al. 2013, Gozbasi et al. 2014 all show that no evidence exist to support the existence of Efficient Market Hypothesis (EMH) for a number of economies they studied, others like Cheung and Coutts 2001, Buguk and Brorsen 2003, Narayan 2005, Qian et al. 2008, Munir and Mansur 2009, Alexeev and Tapon 2011, are of the view that stock markets behave in a way that is consistent with the EMH.

The pioneer work on market efficiency can be traced to Fama (1970) Efficient Market Hypothesis where stock market efficiency was classified into three (3) categories – Weak, Semi-strong, and Strong market efficiencies.
Gozbasi et al. (2014) argued that at best emerging economies stock markets can be described to have weak form efficiency.

Though, a number of empirical studies have been conducted to examine the behavior of stock market as it relates to market efficiency in emerging economy with mixed results, little empirical analysis had been conducted on Nigeria.

Nigeria is the largest economy in Africa and one of the fastest growing economies in the world (WDI 2014). The nation has a vibrant stock market with a market capitalization of about eleven trillion naira. As at June, 2016, it has about one hundred and eighty (180) listed companies on the floor of the exchange. In term of market capitalization, the Nigeria Stock Exchange is the third largest exchange in Africa.

The essence of this paper is to examine the EMH for the Nigerian stock market using Wavelet unit root test approach. Wavelets are considered more powerful estimation techniques for signalling processing which offers more insight to the stock market efficiency framework by decomposing time series into time scale component. It allows analyzing stock market behaviour (which is time series in nature) within the context of frequency domain without losing the time information.

The paper also intends to know whether or not the Nigerian stock market is characterized with random walk or with mean reversion. Evidence of Random walk hypothesis, means reversion among other things is the basic condition used in empirical literature to determine market efficiency. Examining the efficiency level of the stock market has some important implication for virtually all the economic agents especially the policy makers and investors. When the behavior of financial series - stock market index included – cannot be predicted because they can change without limit in the long run, then it can be described as following a random walk, hence, any shocks to stock prices are permanent. The implication is that the long run volatility in stock prices will increase over time. On the other hand, mean reversion condition exists when stock prices follow a stationary trend, thus future returns can be forecasted by using historical prices (Tiwari and Kyophilavong 2014).

Briefly foreshadowing our main findings, it was observed that when frequency domain was factored into the Nigeria stock market efficiency framework, evidence abound to reject the null hypothesis whereas, no evidence exist not to do so with conventional time-domain estimation technique. The rest of the paper is structured as follows: Section two presents the literature review, section three deals with data and methodology, section four presents the results while section five concludes the study.

1. Research background

The theoretical note that described the behavior of stock prices to follow a random walk mirroring efficiency could be traced to the works of Samuelson (1965), Fama (1965) and Mandelbrot (1966). Ever since, a number of studies have attempted to examine stock market efficiency using various techniques.

The random walk hypothesis explains that fluctuations in stock markets can change without limit in the long run, thus, making its prediction very impossible. The theory explains that, if stock market prices are characterized by random walk process, then innovation to the prices will be permanent, thereby making market prediction based on historical prices difficult, with attending potential for increase in long run volatility over time. However, if the stock prices are mean reverting such that is follows a stationary trend, prediction of future return based on historical data/prices is possible. Building on this framework, Fama (1970) observed that the link between information content and price prediction is necessary to determining whether or not stock market is efficient. The author further classified stock market efficiency tests into three viz: Weak form test, Semi strong efficiency test, and Strong efficiency test. In its Weak form, a market is efficient if all the publicly available information about the economy is incorporated into the stock prices, and prices response to arrival of new information effectively. As noted by Tiwari and Kyophilavong (2014), over the years’ evidence of the existence of random walk hypothesis has been considered to be a sufficient condition for market efficiency.

Every sincere the work of Fama (1970), a number of studies has been carried out to examine efficiency of markets around the world with mixed results. For example, Tiwari and Kyophilavong (2014) examined the validity of random walk hypothesis on the BRICS stock indices using wavelet based unit root test proposed by Fan and Gencay (2010), the authors observed that evidence abound to reject the null of unit root for all the BRICS countries.
except for the Russian Federation. This implies that stock markets in BRICS except for the Russian Federation are inefficient and are predictable. A major flaw of Tiwain and Kyophilavong’s contribution lies in the coverage as the number of years covered are relatively small for accurate result.

In a related development, Narayan and Smyth (2006) observed that results from the empirical investigation of fifteen (15) European stock market supports existence of random walk hypothesis for the European economies examined. Similar results can also be found in Ozdemir 2008, Marashdeh and Shrestha 2008, Munir and Mansur 2009, Oskooe et al. 2010, for Turkey, UAE, Palestine and Iran stock market respectively.

In another development, some authors have documented that no evidence abound from empirical analysis to support the random walk hypothesis. Some of these scholars include Lima and Tabak (2004), Tabak (2003) and Soon et al. (2014) for stock markets of China, Singapore and Malaysia respectively.

Opponents of the random walk hypothesis relies majorly on Mean reversion framework which draws its strengths from stock market Overreaction hypothesis which stresses that investors’ reaction in term of being pessimistic or optimistic often swings away stock prices from their basic value at least in the interim. They also identified irrational behavior of noise traders, stock market size and associated risk factors, price related microstructure –induced biases effect among others as the key factors that debunk the random walk hypothesis (see De Bondt and Thaler (1985), Shefrin and Statman (1985), Poterba and Summers (1988), Zarowim (1990), Richard (1997), Summers (1986), Conrad and Kaul (1993), Chan (1988), Ball and Kothari (1989)).

Early studies from Africa reveal that most African stock markets are inefficient. For instance, Dickson and Muragur (1994) documented that Nairobi Stock Market is inefficient, similar results were reported for Ghana and Namibia by Osei (1998) and Matome (1998) respectively. For some selected African economies, Gyanfli et al. (2016) noted that no evidence exists to support the EMH. The authors’ submission was in line with the findings of Magusson and Wydick (2002) who used partial autocorrelation test to analysis the efficiency nature of a number of African stock markets – Nigeria inclusive- and observed that stock markets in Nigeria, Ghana and Zimbabwe did not in any way support the EMH (see also Smith 2008). Sunde and Zivanomoyo (2008), Uddin and Khoda (2009) are of the view that no evidence supports the random walk hypothesis for the stock market of Zimbabwe and Senegal respectively.

A critical review of the Nigerian literature shows that existing literature were conducted within time-domain framework with no attempt to calibrate frequency domain. For instance, Ayadi (1983) employed Wald-Wolfowitz test and runs test to examine random walk property of the Nigerian Stock Market. As later noted by Inanga and Asekome (1992), Ayadi’s submission is biased because he excluded zero runs in his tests. Samuel and Yacout (1981), Inanga and Asekome (1992), Omole (1997) and Adelekan (2004) all used serial correlation analysis to examined stock market efficiency in Nigeria at various time period.

The preference of frequency-domain over time-domain estimation techniques as recently emphasis in academic circle is what motivates the current study to examine stock market efficiency using data from the Nigerian economy.

2. Data and methodology

2.1. Data

In this study, we used the All Share Index (ASI) weekly data sourced from the Central Bank of Nigeria Statistical Bulletin (various issues). Our data spanned from 1985-2016. The choice of the scope of the data was induced by
the availability of data. Though the Nigeria Stock Exchange began operation in 1960, Stock market data became publicly available in 1985 and 2016 is the most current year.

2.2. Methodology

Different methods have been employed in empirical literature to examine market efficiencies especially in emerging economics. This study differs from previous work by using wavelet analysis to analysis weekly data sourced on the Nigerian economy for the period 1985 to 2016. Wavelet analysis outperforms earlier techniques like serial correlation, run test, Generalized Autoregressive Conditional heteroskedasticity, Q-test etc., because it has the ability to decompose data into several time scales and possess the ability to handle non-stationary data and localization in time. It also establishes both the long run and the short run relationship through the use of wavelet time scales, thereby providing a wholistic view on the entire relationship (Durai and Bhaduri 2009, Aloui and Hikiri 2014, Tiwari et al. 2016, Moya-Martínez 2015, Madaleno and Pinho 2015, Boubaker and Sghaier 2015, Hathroubi and Aloui 2016, Li et al. 2014, Nury et al. 2015, Xue et al. 2014, Yang et al. 2016).

The preference of wavelet analysis over other estimation techniques could also be justified from its ability to calibrate frequency domain into empirical analysis. Most of the existing estimation techniques are based on the time-domain framework with no attention paid to frequency domain. However, evidence abound that some appealing relationship among macroeconomic variables exist at different frequencies that time domain framework will not be able to capture (Andries et al. 2014, Bai et al. 2016, Jammazi, and Reboredo 2016, Bahmani-Oskooee et al. 2016). In addition, stochastic process can be decomposed into wavelet components with specific frequency band.

Another significant power of wavelet lies in its ability through the wavelet power spectrum to measure the contributions of the variance at a particular frequency band in comparison to the overall variance of the process (Boubaker and Sghaier 2015, Hathroubi and Aloui 2016, Li et al. 2014, Nury et al. 2015, Bai et al. 2016, Jammazi and Reboredo 2016, Bahmani-Oskooee et al. 2016, Xue et al. 2014, Yang et al. 2016).

Fan and Gencay (2010) describes the wavelet-based unit root tests as follow.

\[y_t = p y_{t-1} + u_t \] \hspace{1cm} (1)

where: \(u_t \) is a weakly stationary zero mean error with a strictly positive long-run variance defined by \(w^2 \equiv y_0 + 2 \sum_{j=1}^{\infty} y_j \) given that \(y_j = \mu (\mu t - j) \) expressed as:

\[y_t = \mu + a_t + y_t^\varnothing \] \hspace{1cm} (2)

If \(H_0: p = 1 \), then \(u_t^\varnothing \) is a unit root process, but if \(H_0 : (p) < 1 \), then \(y_t^\varnothing \) is a zero mean stationary process, if \(\alpha = 0 \). If \(H_0: p = 1 \), \(y_t^\varnothing \) is a unit root process. If \(H_0: p = 1 \) \(y_t^\varnothing \) is a zero mean static any process, \(\alpha = 0 \) \(\{y_t - \bar{y}\} \) where \(\bar{y} = T^{-1} \sum_{t=1}^{T} y_t \) is the sample mean of \(\{y_t\} \). If \(\alpha \neq 0 \), then we use the detrended series \(\{\tilde{y}_t = \sum_{j=1}^{T} (\Delta y_j - \Delta \bar{y})\} \).

Fan and Gencay (2010) further developed two test statistics for the demeaned and detrended series as follows \(S_{T,1}^{LM} \) and \(S_{T,1}^{Ld} \) using DWT wavelet. The two tests are defined as follows:

\[S_{T,1}^{LM} = \frac{\sum_{t=1}^{T/(p+1)} (y_{t+1}^\varnothing)^2}{\sum_{t=1}^{T} (\bar{y}_t - y_t)^2} \] \hspace{1cm} (3)

\[S_{T,1}^{Ld} = \frac{\sum_{t=1}^{T/(p+1)} (y_{t+1}^\varnothing)^2}{\sum_{t=1}^{T} (\bar{y}_t - y_t)^2} \] \hspace{1cm}(4)

To fitting into our specification, we employed Morlet’s wavelet and expand equation (4) such that

\[M(t) = \frac{1}{\pi^{1/4}} e^{i\omega_0 t} e^{-t^2/2} \] \hspace{1cm} (5)
where: ω_0 represent the central frequency of the wavelet, following Aloui and Hkiri (2014), the study used $\omega_0 = 6$, this is premised on the fact that evidence abound that setting ω_0 to 6 will enhance a good balancing between time and frequency localization (see also Rua and Nunes 2009, Vacha and Barunik 2012).

3. Presentation of results

Table 1 below presents the descriptive statistics of the All Share Index in Nigeria for the period studied. From the result, it can be deduced that the Kurtosis statistic is greater than 3; this implies that the distribution is peaked (Leptokurtic) relative to normal. The excess kurtosis strongly supports the evidence of non-normality as indicated by the Jargue-Bera test. The Skewness, which is a measure of asymmetry of distribution around its mean, is negative as reported in the Table 1.

Table 1. Descriptive Statistics of the ASI

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.5052</td>
</tr>
<tr>
<td>S.D</td>
<td>3.784</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.5051</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>4.7250</td>
</tr>
<tr>
<td>J.B</td>
<td>101.482</td>
</tr>
<tr>
<td>(Prob)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>AR (1)</td>
<td>0.1179</td>
</tr>
<tr>
<td>LB_Q-Stat.</td>
<td>5329</td>
</tr>
<tr>
<td>AC(12)</td>
<td>0.812</td>
</tr>
<tr>
<td>ARCH LM(12)</td>
<td>3.2408</td>
</tr>
<tr>
<td>ADF Test</td>
<td>-0.6128(0)</td>
</tr>
<tr>
<td></td>
<td>0.9775</td>
</tr>
</tbody>
</table>

Source: Authors’ computation (2016)

The results of the test statistics of for Equations 3, 4 and 5 of the wavelet-based unit root tests are presented in Table 2.

Tables 2. Wavelet-Based unit root tests

<table>
<thead>
<tr>
<th></th>
<th>Lag = 10</th>
<th>Lag = 20</th>
<th>Lag = 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^L_{T,1}$</td>
<td>-47.14758*</td>
<td>-42.87703*</td>
<td>-39.45521*</td>
</tr>
<tr>
<td>$S^L_{T,1}$</td>
<td>-172.2335*</td>
<td>-157.1544*</td>
<td>-145.6549*</td>
</tr>
<tr>
<td>$S^M_{(t)}$</td>
<td>-206.2653**</td>
<td>-158.12254**</td>
<td>-145.6885**</td>
</tr>
</tbody>
</table>

Note: *; ** and *** denotes 1%; 5% and 10% significance respectfully.
Source: Authors’ computation (2016)

In order to test the robustness of our results, the study followed Tiwani and Kyophilavong (2014) by using three different lags: 10, 20 and 30 from the results, it can be deduced that evidence abounds to reject the null hypothesis of existence of random walk in the All Share Index for the Nigerian economy. The result from Morlet’s wavelet also provides sufficient evidence to reject the null hypothesis of random walk for the All Share Index.

To test the supremacy of the wavelet-based estimation techniques over the conventional time-domain estimation techniques, we used a set of unit root tests that considered structural breaks in our models. Specifically, we used the Narayan and Popp (2010) and GARCH-based unit root test proposed by Liu and Narayan (2011). Both tests incorporate at least two structural breaks in the data series.

The result of the time domain estimation techniques are presented in Tables 3 and 4. From the results, it can be deduced that both the test statistics do not provide any evidence to reject the null hypothesis – i.e they accept the null hypothesis type.
Table 3. Narayan and Popp (2010) unit root test with break test

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB1</td>
<td>TB2</td>
</tr>
</tbody>
</table>

Source: Authors’ computation (2016)

Table 4. Liu and Narayan (2011) GARCH (1,1) unit root test with break test

<table>
<thead>
<tr>
<th>Periods</th>
<th>TB1</th>
<th>TB2</th>
<th>$p(t_p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASI</td>
<td>1985:1 – 2015:12</td>
<td>87:06</td>
<td>-7.039</td>
</tr>
</tbody>
</table>

Source: Authors’ computation (2016)

Conclusion

This paper examined the validity of the random walk hypothesis for the Nigerian stock market using a newly developed econophysics wavelet analysis. We employed a 3 lag lengthens so as to test the sensitivity of the results. Our results clearly reject the null hypothesis of random walk hypothesis for the Nigerian stock market. This implies that the Nigeria capital market is inefficient. The result further implies that the stock market can serve as a platform to advance economic growth in Nigeria as it provides opportunities for arbitrage activities thereby attracting funds both domestic and external, needed for economic growth.

The study further apply two time domain unit root test that considers structural breaks, the results from the time domain estimation techniques shows that evidence abound to accept the null hypothesis.

References

*** Central Bank of Nigeria Statistical Bulletin (Various Issues)

*** World Development Indicator, 2014