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ABSTRACT 

This research tries to find a meeting point that will reduce regenerative chatter 

which is a prolonged form of chatter under control by modeling the machining 

process using first order least square full discretization method. A mathematical 

model was developed to assist to locate the productive spindle speed at which the 

lobbing effects occur and depth of cut combination for the machinist. Computational 

algorithm was developed for the purpose of delineating stability lobe diagram into 

stable and unstable regions. The results show considerably smooth milling which will 

be of immense benefit to machinist in choosing the route to follow in machining 

oppression. 
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1. INTRODUCTION 

Milling is an intermittent process which involves the removal of material by engagement of 

workpiece pass a spinning multi-tooth cutter as can be seen in metal, wood, ceramics, glass. 

etc.[1]. It forms a dominant part of a machining process in manufacturing technology with its 

use spanning cross machining of die, mould and complex aerospace parts [2]. Efficiency of 

milling process is shortchanged by vibration which itself is triggered off by machining 
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conditions. Chatter vibration is a product of dynamic robs off between the tool and the 

workpiece in a milling process under unstable cutting parameters combination [3, 4]. 

As there is relative motion between tool and work piece, various internal and external 

forces rises in tool and work piece. These forces set up vibration in machine part which is in 

motion or at rest. Basically three types of vibration occur in machine, free vibration, forced 

vibration and self-excited vibration [5]. First two vibrations can be easily detected and 

controlled by using dampers and by other means. But, mainly chatter prediction is major task 

for the operator while operating at higher speed [6].  

Basically, milling is classified into peripheral milling and face milling as seen in Figure 1. 

Peripheral milling results in a surface that is parallel to the tool axis and it’s usually 

implemented on a horizontal milling machine, hence, alternative name “Horizontal milling”.  

Face milling produces a surface that is at right angle with the tool axis and it’s usually 

implemented on vertical milling machines, hence, alternative name “vertical milling”[3].  

   

Figure 1 (a) Peripheral Milling               (b) Face Milling. 

2. THE MATHEMATICAL MODEL OF MILLING PROCESS 

The two degree of freedom milling model is considered more realistic being that real tools 

lack rigidity in transverse plane causing compliance in both the feed and feed-normal 

directions. The two degree of freedom model of flexible milling tool cutting a rigid workpiece 

as presented by Insperger and Stepan [7]. 

 

Figure 2 Milling tooth workpiece disposition 

The cutting forces on     tooth are given by the non-linear law as follows 

    ( )     ,       ( )-
          (1) 

      ( )     ,       ( )-
       ( )        (2) 
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The symbols    and    are the tangential and normal cutting coefficients which are 

numerically influenced by workpiece material properties and tool shape. The symbol   stands 

for the number of tool teeth. Where   is the depth of cut,   is the ratio of      ,      is the 

actual feed given as  ( )   (   )   which is the difference between present and one period 

delayed position of tool and   is an exponent  that is usually less than one, having a value of 

¾ for the three-quarter rule. The instantaneous angular position of  th tooth   ( ) is given as 

  ( )  .
   

  
/   (   )

  

 
          (3) 

The dynamical model shown in Figure 3 is a 2 DOF depiction of an end-milling tool that 

vibrates in the      plane (horizontal plane). The modal parameters       and    are for 

  vibration while       and     are for   vibration 

 

Figure 3 (a) 2-DOF tool dynamics                  (b) Free-body diagram of toll dynamics. 

Adapted from [6] 

The governing equation of motion now becomes 

     ̈( )    , ̇( )   -    , ( )    -      ( )                   (4) 

    ̈( )     ̇( )    ( )     ( )                     (5) 

It can be deduce from figure 3 that the   and   component of the cutting force on the 

tool are 

   ( )  ∑ ( )[    ( )     ( )       ( )     ( )]
 
           (6) 

  ( )  ∑ ( )[     ( )     ( )       ( )     ( )]
 
           (7) 

The actual feed rate    of     tooth at angular position   ( )  from Figure 3 are 

  ( )  , ( )   (   )-     ( )  , ( )   (   )     ( )     (8) 

where  ( )       ( )   ( )  ( )    ( )   ( ) 

The quantity  ( ) and  ( ) are perturbations in the   and   directions respectively. 

The linearized Taylor series expansion of    
 
 about        ( ) then reads 

  
  ,        ( )-

   ,        ( )-
   *, ( )   (   )-     ( )   

, ( )   (   )-     ( )+         (9) 
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Setting  ( ) and  ( ) to zero in equations (9), (1-2) and (6-7) above will lead to the 

formation of equations (10) and (11) from equations (4) and (5) 

        ̈( )     ̇ ( )      ( )       ( )                (10) 

        ̈( )     ̇ ( )      ( )       ( )                (11) 

Where 

    ( )    (  )
 ∑ ( )      ( )[      ( )        ( )]

 
         (12) 

    ( )    (  )
 ∑ ( )      ( )[       ( )        ( )]

 
         (13) 

The periodic forces      ( ) and     ( ) respectively drives the two orthogonal 

  periodic tool responses   ( ) and   ( ). 

Putting equations (10-11) into equation (4-5) and simplifying give  

   ̈ ( )     ̇ ( )      ( )      ( ), ( )   (   )-     ( ), ( )   (   )-  (14) 

   ̈ ( )     ̇ ( )      ( )      ( ), ( )   (   )-     ( ), ( )   (   )-  (15) 

With the specific periodic cutting force variations, we have as  

   ( )    ∑   ( )    (  ( )) [(    ⁄ )     ( )       ( )]
 
       (16) 

   ( )    ∑   ( )     ( )[(    ⁄ )     ( )       ( )]
 
        (17) 

   ( )    ∑   ( )    (  ( )) [(    ⁄ )     ( )       ( )]
 
        (18) 

   ( )    ∑   ( )     ( )[(    ⁄ )     ( )       ( )]
 
        (19) 

Putting equations (14) and (15) in matrix form gives 

 ̈( )       ̇( )       ( )      ( ), ( )   (   )-     (20) 

Where   ( )  * ( )    ( )+  is the vector of chatter vibration in the two orthogonal 

directions of     and  , the mass M, damping C and stiffness K matrices are respectively 

given as  

  [
   
   

],   [
   
   

],   [
   
   

]       (21) 

The forcing function in equation (21)  ( ) (   ) contains a time-periodic function  

 ( ) that results from rotational motion of the milling teeth 

 ( )    [
   ( )    ( )

   ( )    ( )
]         (22) 

The subscripts in equation (21) indicate the direction of tool modal parameters as shown 

in figure 3. 

It is seen that the performance prescription parameters of interest in this work namely;   

and   are contained the governing model (equation (20)) via  ( ) and   ( ) respectively and 

thus could be studied simultaneously. By pre-multiplying equation (20) with the inverse of the 

mass matrix, the modal form of the governing model upon little re-arrangement becomes 

 ̈( )       ̇( )     ,   ( )- ( )       ( ) (   )     (23) 

The expanded form of equation (23) when each of the matrix operations     ,       

and    ,   ( )- are carried out reads 
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{
 ̈( )

 ̈( )
}  [

       
       

] {
 ̇( )

 ̇( )
}  [

   
  

    ( )

  

    ( )

  

    ( )

  
   
  

    ( )

  

] {
 ( )

 ( )
}  

[

    ( )

  

    ( )

  

    ( )

  

    ( )

  

] {
 (   )

 (   )
}         (24) 

Equation (24) above is the modeled equation for milling chatter whose stability behaviour 

will be used to predicts a milling process. 

3. CONCEPT OF STABILITY ANALYSIS OF A MILLING PROCESS 

Looking at the governing model (equation (24)), four state variables can be identified;  ( ), 
 ( ),  ̇( ) and  ̇( ). The state variables are then designated as follows;   ( )   ( ), 
  ( )   ( ),   ( )   ̇( ) and   ( )   ̇( ). 

 ̇( )   ( ) ( )   ( ) (   )        (25) 

Where  ( )  *  ( )   ( )   ( )   ( )+
  (the superscript “T” means transposition) 

 ( )  

[
 
 
 
 
 

    
    

    
  

    ( )

  
 
    ( )

  
        

 
    ( )

  
    

  
    ( )

  
        ]

 
 
 
 
 

     (26) 

 ( )  

[
 
 
 
 
 

    
    

 
    ( )

  
 
    ( )

  
  

 
    ( )

  
 
    ( )

  
  

]
 
 
 
 
 

        (27) 

Re-arrangement of equation (25) which is the needed governing model to conform with 

the full-discretization method entails splitting the matrix  ( ) into  ( ) and a constant matrix  

  such that equation (25) becomes  

 ̇( )    ( )   ( ) ( )   ( ) (   )       (28) 

where 

  

[
 
 
 
    
    

    
          

     
         ]

 
 
 
       (29) 

The model of milling adopted in this work is the usual procedure which involves 

discretizing the system’s period and interpolating or approximating the solution in the discrete 

intervals. The full-discretization method is the choice of stability analysis in this work 

because it has been proven to clearly draw a line or boundary for classification of milling 

process into stable and unstable than the semi-discretization method[7]. This is due to the 

introduction of interpolation polynomials in the integration scheme of full-discretization 

method which upon solving produces a discrete map that is used for stability analysis [1]. The 

full-discretization method is heavily based on discretization. 
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The solution in the discrete interval ,       - arises from definite integration between the 

limits     and       to become 

      
      ∫   (      ), ( ) ( )   ( ) (   )-  

    
  

     (30) 

The first order least squares approximation of the state term  ( ) is give thus; 

 ( )  *   + [∑ { 
  
} *   +

   

   
]

  

∑ { 
  
}   

   

   
        (31) 

It should be noted that     and       in the summation signs of equation   (32) 

corresponding to terms at    and     . This is re-written as  

 ( )  *   +
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       (34) 

If       and         are substituted into the above equation, then equation (34) can be 

put in the form  

 ( )  
  yy

ii
s

t
st

t 1

11




         (35) 

In the same way as above, the delay state  (   ) and periodic coefficient matrix 

 ( ) will also give as  

 (   )  
  yy

riri
t

t
tt

t  
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 1
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       (36) 

 ( )  
  BB 1ii

t
t

1
tt

t

1



         (37) 

Inserting equations (31), (36) and (37) into equation (30) yields  

              (             )   (             )     (             )     
(             )               (38) 

The above equation is re-arrange to give 

       (                )     (             )         (             )     (39) 

Where 

               ,               -
          (40) 

The local discrete map derived from equation (39) is given by [15]  
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The stability matrix for the system becomes [7] 

                        (42) 

Where 

   

[
 
 
 
 
   
       

       
 

      
      
      
      ]

 
 
 
 

        (43) 

The nature of eigen-values of the stability matrix is the criterion for stability 

characterization of milling process. Asymptotic stability requires all the      eigen-values 

of the stability matrix   to exist within the unit circle centred at the origin of the complex 

plane [8]. Stability boundary of milling process is then a curve that joins the critical parameter 

combinations at which maximum-magnitude eigen-values of   lie on the circumference of the 

unit circle [8]. Milling stability lobes are computed with a value of    that is big enough to 

guarantee benchmark accuracy. 

4. ALGORITHM TO COMPUTE STABILITY LIMIT OF MILLING 

Delineation of milling process into stable or unstable occasioned by regenerative chatter can 

only have a real, physical or numerical reality when the constant parameters (which include 

tool, prescription and cutting parameters) are known numerically. The knowledge of tool and 

cutting parameters can stem from either pure experimental analysis or hybrid of experimental 

and numerical/theoretical analysis [9].  

4.1. Algorithm 

Stability limits of milling on the plane of axial depth of cut and radial depth of cut at fixed 

spindle speed is generated by following the algorithm that follows; 

I. Provide the values of tool and cutting parameters. Also provide the approximation 

parameter  , the fixed spindle speed, the step and number of steps of computation 

for both axial and radial depths of cut. 

II. Compute the time-invariant matrix   and its inverse, the discrete delay or period  , 

the discrete time step range    
 

 
 and the   and   matrices. 

III. Chose the first step of axial depth of cut then chose the first step of radial depth of 

cut. Form discrete time intervals ,       - where            (   ) and 

    
 

 
      (       ). At the extremities of the first discrete time interval 

,     - compute   ( ) and utilize it together with the chosen radial depth of cut to 

compute    ( ) then compute    ( ),    ( ),    ( ),    ( ) and use the results to 

form the matrices  (  ) and  (  ). Use the   matrices together with the matrices 

 (  ) and  (  ) to form the matrix   . Then form the matrices    
 ,    

  and 

      
  from the   matrices,   ,  (  ) and  (  ) and   . Making use of the 

matrices    
 ,    

  and       
  form the matrix   .  

IV. With the axial depth of cut fixed at value in step4 carry out the operation in the 

algorithm step4     times at the remaining steps           (   ) and use 

result of all the steps to form the stability matrix  . Compute the eigen-values of   

and chose the eigen-value with maximum magnitude. 

V. Repeat steps 3 and 4 for the remaining steps of radial depth of cut. 
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VI. Repeat steps 3-6 for the remaining steps of axial depth of cut. 

VII. Connect the parameter combinations of axial and radial depths of cut at which 

maximum magnitude of eigen-values are unity to form the stability limit. 

The algorithms above will be utilized to generate stability limits that will be jointly used 

to delineate the stability lobs diagram. 

5. RESULTS AND DISCUSSION 

Utilization of the algorithm in section 4 would enable us generate stability limit that allows 

selection of the maximum product     . The graphs of the aforementioned algorithm are 

mapped out with MATLAB for stability milling process on three different plane of parameter 

space for comparative analysis [10, 11]. Numerical values of parameters of table 1 are 

borrowed from Weck et al as cited in [3] and are as presented in table below. 

Table 1 Numerical parameters for milling process stability analysis from 

    600 Hz 

    660 Hz 

   5600 kN/m 

   5600 kN/m 

   0.035 

   0.035 

        
 ⁄  

        
 ⁄  

  3 

   600 mPa 

   0.07 mPa 

   0 (up-milling) 

 Weck et al as cited in [3] 

The parameters in table 1 and the algorithm in section 4 were used to generate stability 

limits of milling process on the plane of axial depth of cut and radial depth of cut at some 

elected productive speeds of 4208, 6270, 12600 as can be seen below. 

 

(a) 
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(b) 

 

(c) 

Figure 4 Stability limits of milling on the plane of axial depth of cut and radial depth of cut at selected 

productive spindle speeds seen in the legends. 

It can be seen from the above figure that rise in spindle speed enhances the stable region 

and suppresses the unstable region. Figure 4c agrees closely with figure generated with 

identical set of parameters in the work of   Tekeli, A. and E. Budak [3]. This meaning that 

algorithm in section 4 for the first order least square approximated map of the work of 

Ozoegwu, C.G. [8] provides reliable stability limit of milling process on the plane of depths 

of cut. 

The importance of implementing the algorithm is section 4 for generating stability limit 

on plane of axial and radial depths of cut need not to be overemphasized when the algorithm 

is implemented at a non-productive spindle speed of 9000rpm with all other parameters of 

computation fixed at a value used in generating figure 4c. 

6. CONCLUSION 

Regenerative chatter is a major obstacle to machine administrator this days in accomplishing 

high accuracy and satisfactory surface finish. There are different methods of controlling 

regenerative chatter in milling process. These are analytical, semi-analytical while others are 

experimental. This work establishes the framework for utilization of the least squares 

approximated full-discretization technique in stability analysis on the plane of axial depth of 

cut and radial depth of cut analytical method. A point by point computational calculation was 

displayed for the purpose of delineating the lobes into stable and unstable regions. With the 

proper understanding of the stability lobe diagram, operators will have fewer factors to 
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contend with while performing their works because it will specify the exact route to be 

followed while machining so as to avoid regenerative chatter. 
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