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Abstract

An approximate analytical solution of the non-relativistic Schrédinger equation for any arbitrary ¢ — states is studied with a
combination of inverse potential and inversely quadratic Yukawa potential using the supersymmetric approach as the powerful
tool to obtain the energy eigenvalue and the corresponding wave function in the presence of a suitable approximation scheme.
The Onicescu information energy is also calculated in a close and compact form. The effect of the potential strengths' on the
Onicescu information energy is investigated in detail. It is observed that as the Onicescu information energy decreases, the

quantum number n increases.
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Introduction

In the recent years, the analytical approaches for solving
the second order homogeneous linear differential
equations have been proposed [1-7]. This is because they
are less time consuming compared to the numerical
techniques. These methods are powerful tools in finding
the energy eigenvalues and wave functions
(eigensolutions) of all solvable quantum physical
potentials [8-14]. The different analytical techniques for
finding the eigensolutions includes asymptotic iteration
method  (AIM), Nikiforov-Uvarov  (NU)  method,
supersymmetric quantum mechanics approach (SUSY QM),
shifted 1/N expansion method, factorization method,
exact/proper quantization rule, formula method for bound
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state problem and so on. These methods have been used
by various authors to solve Schrodinger equation, Dirac
equation and Klein-Gordon equation with some potential
models such as Manning-Rosen potential [4, 7, 15],
Hyperbolic potential [16, 17], Poschl-Teller potential [18-
20], Deng-Fan potential [21-22], Tietz potential [23], Frost-
Musulin potential [24], Yukawa potential [25], inversely
quadratic Yukawa potential [26-27]. It is noted that there
is little or no report on the Schrédinger equation with
either inverse potential or inversely quadratic Yukawa
potential. Thus, in this paper, we intend to study the
Schrédinger equation with a combination of the inverse
potential and inversely quadratic Yukawa potential via
supersymmetric approach. The combination of these
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potential takes the form V(l’) =—2—%,
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where V and V() are the potential depth and  is the

range of the potential. It is obvious that the exact solution
of the Schrodinger equation with potential (1) is not
possible due to the centrifugal barrier. Thus, we resort to
the use of approximation scheme given as

0(0+1) Ar(0+1)a’e™
]/'2 B (l_e—Zar )2 )

2. Bound State Solution

(2)

Given a three dimensional Schrédinger equation [28] as
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and setting the wave function

l//nfm (I’) IUM (F)me (9,¢)I’71,we obtain the

radial part of the Schrédinger equation by the separation
of variables as

Vg (r)=V(r)+——5—F—,

and then substituting potential (1) and approximation (2)
into Eq. (4), we have
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v, = 40(¢ +1)a2e;2‘” .
(1 —e )

To obtain the solution of Eq. (5), we proposed a super
potential function of the form

—2ar
p,e
o(r)=p, +1—2eﬁ’ (6)

By applying the basic concepts of the supersymmetric
guantum mechanics formalism and shape invariance
technique [29-34] to solve Eq. (5), the ground state
function can be written in the form

U, (”) = E'Xp(—J.Q(r)dr), (7)

where a relation

ot .40

is defined. Substituting Eq. (6) into Eq. (8), we obtain the
values of the two parametric constants in Eq. (6) as follow:

* (8)

SuV,a’
K Py
e — (9)
P 2p, )
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p, = —a|1+,/(1+20) + - (10)

Eqg. (8) is a non-linear Riccati equation whose solution is
obtained by inserting a superpotential function of Eq. (6).
The superpotntial function results to the formation of
partner potentials. Thus, to proceed to the next level using
the shape invariance formalism, it is very important to
construct the partner potentials using the superpotential
function:
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Putting ,02 = aO , then, the partner Hamiltonian are
shape invariant via mapping of the form

P >0 — 2. if the shape invariance condition holds
[31], then,

V. (ay,r)=V_(a,r)+R(a), (13)

where a; is a new set of parameters uniquely determined

from an old set aO via the mapping F:
a, —q =f(a0) and the residual term R(Cll) is
independent of the variable r. Therefore, & =0, —2x

and subsequently, &, =, —20m The energy

eigenvalues of the Hamiltonian
2

d
H.(r)==—5+V.(r), (14

+
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are given by

—2ukE,
#:R(al)+R(a2)+R(a3)+, 1s)
—,—,—,R(an_1)+R(an).

Then, from Egs. (9) and (10), we obtain the relation:

2
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_2/'1En,l — h2 _&
a’hn’ 2p, 2

(16)

Substituting the value of 0, into Eq. (16) by taking

Pr =Py — 20an we obtain the complete energy

spectrum as

2
2ll’leO +N2
aZhZ h2
E, =- . (17)
' 2u N
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The corresponding wave function is
s n
Un/.(r):Nn/.y (1_y) X

o [—n,n+2(ﬁ,+n)+2(ﬁ,+%],y}

(18)
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Fig. 1: Variation of energy with the inversely quadratic Yukawa
potential strength.
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Fig. 2: Variation of energy with the inverse potential strength.
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Fig. 3: Variation of the energy of Yukawa potential with its
potential strength.

3. Onicescu information energy

The Onicescu information energy is defined as [35]
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Fig. 4: Energy against potential range.
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Fig. 5: Energy of the inversely quadratic Yukawa potential against
its potential range.
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Fig. 6: Energy against potential range for inverse potential.
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E(p) = 47zj0°” 07 (r). (19)
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Now, defining a relation of the form

ULhH (—n,n+2(ﬁ+g) +2(g+%}emj
=029
(22)

then, the probability distribution which is equal to the

squared or normalized radial wave function is given as

Fig. 7: Information energy against the strength of inversely

quadratic Yukawa potential with V=3and ¢ =0.2.
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Using standard integral of the form

([ (5] e

(24)
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Fig. 8: Information energy against the strength of inverse

potential with VO =3and ¢ =0.2.
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Fig. 9: Information energy of inversely quadratic Yukawa potential

against its strength with &/ = 0.2.
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Fig. 10: Information energy against the quantum number n with

V=8,K)=1and0£=0.2.
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4. Discussion

The solutions of other useful potentials like the inversely
quadratic Yukawa potential and the inverse potential are
obtained by changing the numerical values of the two

potential strength. When we put .VO = (), the potential

(1) reduces to the inverse potential and the energy
equation 17 becomes

11 YT
I (n++DJ
5 ah 2 2 (27)
nt — .
2u n+l+lD
where
L7 4
0 =,1+20) + e
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Fig. 11: Information energy of the Inverse potential against the

quantum number n with & = 0.2.
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Fig. 12: Information energy of the Yukawa potential against the

quantum number n with & = 0.2.

Similarly, when .V = 0, our potential (1) reduces to the

inversely quadratic Yukawa potential and the energy
equation (17) turns to be

2
2 2
’UV(’+ n+1+l§R
2 2

£ an| (28)
nt
24 n+1+1§R
2 2
where
2 8,uV
R= (1+2€) - hzo'

In Figs 1 and 2, we plotted the energy eigenvalue of
potential (1) against the potential depths Vo and V

respectively. In Fig 3, the variation of the energy of the
inversely quadratic Yukawa potential with its depth is
shown. In Fig. 4-6, we plotted the energy of potential (1),
inversely quadratic Yukawa potential and the inverse
potential respectively with the potential range. In both
cases, similar characteristics are observed. In Figs 7 and 8,
we plotted Onicescu information energy of the potential

6
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(1) with the two potential depth. In Fig. 9, the information
energy of the inversely quadratic Yukawa potential against
the potential depth of Yukawa potential is plotted. It is
observed that the variation of the energy eigenvalues with
the potential depth is similar to the variation of the
Onicescu information energy with the potential depth. In
Fig. 10 -12, we plotted Onicescu information energy with
the quantum number n for the potential (1), inversely
quadratic Yukawa potential and inverse potential
respectively. In both cases, the Onicescu information
decreases as the quantum number increases.

5. Conclusion

In this paper, we have studied the bound state solutions of
the Schrodinger equation with an interaction of inverse
and inversely quadratic Yukawa potentials via the
supersymmetric method. It is observed that the effects of
the strength of the inversely quadratic Yukawa potential
on energy eigenvalues is similar to the effects of the
strength of inverse potential on the Onicescu information
energy while the effects of the strength of inverse
potential on the energy eigenvalues is similar to the
effects of the strength of Yukawa potential on the
Onicescu information energy. The Onicescu information
energy decreases as the quantum number n increases.
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