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Abstract 

An approximate analytical solution of the non-relativistic Schrӧdinger equation for any arbitrary  states is studied with a 

combination of inverse potential and inversely quadratic Yukawa potential using the supersymmetric approach as the powerful 

tool to obtain the energy eigenvalue and the corresponding wave function in the presence of a suitable approximation scheme. 

The Onicescu information energy is also calculated in a close and compact form. The effect of the potential strengths' on the 

Onicescu information energy is investigated in detail. It is observed that as the Onicescu information energy decreases, the 

quantum number n increases.   
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Introduction 

In the recent years, the analytical approaches for solving 

the second order homogeneous linear differential 

equa�ons have been proposed [1-7]. This is because they 

are less time consuming compared to the numerical 

techniques. These methods are powerful tools in finding 

the energy eigenvalues and wave functions 

(eigensolutions) of all solvable quantum physical 

poten�als [8-14]. The different analy�cal techniques for 

finding the eigensolutions includes asymptotic iteration 

method (AIM), Nikiforov-Uvarov (NU) method, 

supersymmetric quantum mechanics approach (SUSY QM), 

shi�ed 1/N expansion method, factoriza�on method, 

exact/proper quantization rule, formula method for bound 

state problem and so on. These methods have been used 

by various authors to solve Schrӧdinger equation, Dirac 

equation and Klein-Gordon equation with some potential 

models such as Manning-Rosen poten�al [4, 7, 15], 

Hyperbolic poten�al [16, 17], Pӧschl-Teller potential [18-

20], Deng-Fan poten�al [21-22], Tietz poten�al [23], Frost-

Musulin poten�al [24], Yukawa poten�al [25], inversely 

quadra�c Yukawa poten�al [26-27]. It is noted that there 

is little or no report on the Schrӧdinger equation with 

either inverse potential or inversely quadratic Yukawa 

potential. Thus, in this paper, we intend to study the 

Schrӧdinger equation with a combination of the inverse 

potential and inversely quadratic Yukawa potential via 

supersymmetric approach. The combination of these 
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potential takes the form  
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where V and 0V  are the potential depth and  is the 

range of the potential. It is obvious that the exact solution 

of the Schrӧdinger equa�on with poten�al (1) is not 

possible due to the centrifugal barrier. Thus, we resort to 

the use of approximation scheme given as 
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2. Bound State Solution 

Given a three dimensional Schrődinger equa�on [28] as 
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and setting the wave function 

      1,n m n mr U r Y r      , we obtain the 

radial part of the Schrődinger equation by the separation 

of variables as 
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and then subs�tu�ng poten�al (1) and approxima�on (2) 

into Eq. (4), we have 

   
2

,

, 1 2 ,2 2

( ) 2
( ).

n l

n l n l

d U r
E V V U r

dr

 
    

 
        (5) 

 

 
 

 

2 22 2
00

1 22 2

44
,

1 1

rr

r r

V V eV e
V

e e



 




 


 

 
 

 

2 2

2 2
2

4 ( 1)
.

1

r

r

e
V

e





 








 
 

To obtain the solution of Eq. (5), we proposed a super 

potential function of the form 
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By applying the basic concepts of the supersymmetric 

quantum mechanics formalism and shape invariance 

technique [29-34] to solve Eq. (5), the ground state 

function can be written in the form                                     

                                                      

    0, ,U r exp Q r dr 
                                (7) 

where a relation  

                                               

 
   2

n,2

2
.

ddQ

d

U rr
Q

r
r

dr



,                          (8) 

is defined. Subs�tu�ng Eq. (6) into Eq. (8), we obtain the 

values of the two parametric constants in Eq. (6) as follow: 
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Eq. (8) is a non-linear Riccati equation whose solution is 

obtained by inserting a superpotential function of Eq. (6). 

The superpotntial function results to the formation of 

partner potentials. Thus, to proceed to the next level using 

the shape invariance formalism, it is very important to 

construct the partner potentials using the superpotential 

function: 
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Putting 02 a  , then, the partner Hamiltonian are 

shape invariant via mapping of the form 

2 2 2 .    If the shape invariance condition holds 

[31], then, 

                                              

     0 1 1, , ,V a r V a r R a                               (13) 

where a� is a new set of parameters uniquely determined 

from an old set 0a  via the mapping F:

 0 1 0a a f a   and the residual term  1R a  is 

independent of the variable r. Therefore, 1 0 2a a    

and subsequently, 0 2na a n  . The energy 

eigenvalues of the Hamiltonian                                                       
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are given by 
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Then, from Eqs. (9) and (10), we obtain the rela�on:  
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Substituting the value of 2  into Eq. (16) by taking 

2 2 2 n    we obtain the complete energy 

spectrum as  
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The corresponding wave function is  
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Fig. 1: Varia�on of energy with the inversely quadra�c Yukawa 

potential strength. 

 

Fig. 2: Varia�on of energy with the inverse poten�al strength. 

 

 

 

Fig. 3: Varia�on of the energy of Yukawa poten�al with its 

potential strength. 

 

     

Fig. 4: Energy against poten�al range. 

 

 

Fig. 5: Energy of the inversely quadra�c Yukawa poten�al against 

its potential range. 

 

Fig. 6: Energy against potential range for inverse potential. 

 

3. Onicescu information energy 

The Onicescu informa�on energy is defined as [35] 
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Now, defining a relation of the form 
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then, the probability distribution which is equal to the 

squared or normalized radial wave function is given as 
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where,  
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Using standard integral of the form  
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Fig. 7: Informa�on energy against the strength of inversely 

quadratic Yukawa potential with 3V  and 0.2.   

 

Fig. 8: Informa�on energy against the strength of inverse 

potential with 0 3V  and 0.2.   
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Fig. 9: Informa�on energy of inversely quadra�c Yukawa poten�al 

against its strength with 0.2.   

 

Fig. 10: Informa�on energy against the quantum number n with 

8,V  0 1V  and 0.2.   

 

Fig. 11: Informa�on energy of the Inverse poten�al against the 

quantum number n with 0.2.   

 

Fig. 12: Informa�on energy of the Yukawa poten�al against the 

quantum number n with 0.2. 
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4. Discussion 

The solutions of other useful potentials like the inversely 
quadratic Yukawa potential and the inverse potential are 
obtained by changing the numerical values of the two 

potential strength. When we put 0. 0V  , the potential 

(1) reduces to the inverse potential and the energy 
equa�on 17 becomes 
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In Figs 1 and 2, we plo�ed the energy eigenvalue of 

poten�al (1) against the poten�al depths 0V  and V
respec�vely. In Fig 3, the varia�on of the energy of the 
inversely quadratic Yukawa potential with its depth is 
shown. In Fig. 4-6, we plo�ed the energy of poten�al (1), 
inversely quadratic Yukawa potential and the inverse 
potential respectively with the potential range. In both 
cases, similar characteris�cs are observed. In Figs 7 and 8, 
we plotted Onicescu information energy of the potential 
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(1) with the two poten�al depth. In Fig. 9, the informa�on 
energy of the inversely quadratic Yukawa potential against 
the potential depth of Yukawa potential is plotted. It is 
observed that the variation of the energy eigenvalues with 
the potential depth is similar to the variation of the 
Onicescu information energy with the potential depth. In 
Fig. 10 -12, we plotted Onicescu information energy with 
the quantum number n for the poten�al (1), inversely 
quadratic Yukawa potential and inverse potential 
respectively.  In both cases, the Onicescu information 
decreases as the quantum number increases. 

5. Conclusion 

In this paper, we have studied the bound state solutions of 
the Schrӧdinger equation with an interaction of inverse 
and inversely quadratic Yukawa potentials via the 
supersymmetric method. It is observed that the effects of 
the strength of the inversely quadratic Yukawa potential 
on energy eigenvalues is similar to the effects of the 
strength of inverse potential on the Onicescu information 
energy while the effects of the strength of inverse 
potential on the energy eigenvalues is similar to the 
effects of the strength of Yukawa potential on the 
Onicescu information energy. The Onicescu information 
energy decreases as the quantum number n increases. 
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