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Abstract 

The analytical approximate solution of a three-dimensional non-relativistic Schrӧdinger equation was obtained with a 

generalized Morse potential model for any arbitrary state in the framework of the parametric Nikiforov-Uvarov method. To 

test the accuracy of the energy equation, numerical results for various ,n  and the screening parameter   were computed. 

These results were in good agreement when compared with other existing results. To show more practical applications of the 

results, the rotational-vibration transition frequencies for hydrogen fluoride molecule was calculated numerically and 

compared with existing results. 
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1.0   Introduction 

The analytical solution of the radial Schrӧdinger equation is of high importance in non-relativistic quantum mechanics, since 

the wave function contains all the necessary information to describe a quantum system fully. There are only a few physical 

potentials for which radial Schrӧdinger equation can explicitly be solved for all n and  . Thus, the exact wave function of 

the radial Schrӧdinger equation is for some given potentials [1-5]. In a situation where 0, the solution of the radial 

Schrӧdinger equation with some potentials is possible only with the introduction of the approximation scheme which deals 

with the centrifugal barrier [6,7]. Such approximation scheme include the Pekeris approximation [8,9], the Padé 

approximation [10] and the Greene-Aldrich [11].  

In the past few years, the solutions of the Schrӧdinger equation were obtained with exponential-type potentials in the 

presence of the approximation scheme. These include Hulthén potential [12,13], Manning-Rosen potential [14,15], Eckart 

potential [16] and the generalized Morse potential [17]. So far, many methods have been developed by several researchers to 

obtain the bound state solutions of the Schrӧdinger equation. These methods include asymptotic iteration method (AIM) [18-

23], the super-symmetric (SUSY) shape invariance method [24-27], the Nikiforov-Uvarov (NU) method [28]. Such useful 

works were reported by Ita [29], who obtained energy eigen values and the corresponding wave function by solving the 

Schrӧdinger equation with the Hellmann potential using 1 𝑁  expansion method and the NU method. Kocak et al. [30] solved 

the Schrӧdinger equation with the Hellmann potential using the asymptotic iteration method and obtained energy eigen 

values and wave functions. Mesa et al. [31] obtained bound state spectrum of the Schrӧdinger equation with the generalized 

Morse potential and Pöschl-Teller potential. Arda and Sever [32] solved the one dimensional Schrӧdinger equation for the 

generalized Morse potential with the NU method and obtained bound state solutions for the effective mass for some diatomic 

molecules.  
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It is worthy to note that in all the studies mentioned above, the authors did not apply the obtained bound state solutions to 

solve practical problems such as obtaining the rotational-transition frequencies of diatomic molecules. This seems to be 

scarce in literature. However, Zhang et al. [33] solved any l-state solutions of the Schrӧdinger equation with the generalized 

Morse potential and also calculated the rotational-transition frequencies of hydrogen fluoride (HF) diatomic molecule using 

the basic concept of the super-symmetric (SUSY) shape invariance formalism. Therefore, the intent of this paper is to obtain 

the  - state solutions of the Schrӧdinger equation with the generalized Morse potential with the aim of computing the 

rotational-transition frequencies of HF diatomic molecule using an elegant parametric Nikiforov-Uvarov (NU) method. The 

generalized Morse potential to be studied is given by Dong and Gu [17]. 
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where 𝑟 is the internuclear distance with the dimension, 0 ≤ 𝑟 < ∞, 
eD is the dissociation energy, 𝑏 = 𝑒𝛼𝑟𝑒 − 1 is the 

potential strength, 𝑟𝑒  is the equilibrium bond length. A suitable approximation scheme must be employed to obtain any  - 

state solutions of the radial Schrӧdinger equation with the potential in Equation (1) in order to take care of the centrifugal 

term. In this study, the improved approximation scheme [33] was employed. 
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where 𝐶0 is a dimensionless constant. 

 

2.0   Methodology 

2.1 The Parametric Nikiforov-Uvarov (NU) Method 

The parametric NU method is an effective method to solve second-order differential equations derived by Tezcan and Sever 

[35] from the conventional Nikiforov-Uvarov method. The general form of a Schrӧdinger equation obtained is given by 
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Based on Equation (3) above, the condition for the wave function and energy equation are respectively given as 
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are the orthogonal Jacobi polynomials and the parametric constants are deduced as 
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3.0  Results 

 

3.1  Bound State Solution 

 

The radial Schrӧdinger equation is given of the form [28] 
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where 𝜇 is the reduced mass, 𝐸 is the non-relativistic energy, 𝑉 𝑟  is the interacting potential and   is the angular 

momentum quantum number. Substituting both the generalized Morse potential in Equation (1) and approximation scheme in 

Equation (2) into Equation (7) gives 
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By defining a variable of the form 
ry e 

 and substituting into Equation (8) gives 
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Comparing Equation (9) with Equation (3), the values of the parametric constants are obtain as 
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Now substituting the appropriate parametric constants in Equation (13) into Equation (4) and Equation (5) gives the wave 

function in Equation (14) and the energy equation in Equation (17) 
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Table 1: Comparision of bound state energy eigen values in eV for various 𝒏 and   quantum numbers of the 

generalized Morse potential for 2p, 3p, 3d, 4p, 4d and 4f states with 1   and 115eD cm  
 

State   Present result 

(NU) 

Dong and Gu 

(numerical) [17] 

Zhang et al.  

(SUSY)    [33] 

   2p   0.05 

  0.10 

  0.15 

  0.20 

    7.77122 

    7.77577 

    7.78125 

    7.78768 

    7.86280 

    7.95537 

    8.04724 

    8.13842 

   7.86080 

   7.95330 

   8.04510 

   8.13620 

   3p   0.05 

  0.10 

  0.15 

  0.20 

    10.9468 

    11.0628 

    11.1779 

    11.2921 

    10.9998 

    11.1647 

    11.3265 

    11.4851 

   10.9978 

   11.1626 

   11.3262 

   11.4828 

   3d   0.05 

  0.10 

  0.15 

  0.20 

    10.0723 

    10.1725 

    10.2734 

    10.4739 

    10.2165 

    10.3541 

    10.4899 

    10.6240 

   10.2160 

   10.3535 

   10.4894 

   10.6235 

   4p   0.05 

  0.10 

  0.15 

  0.20 

    12.4651 

    12.6344 

    12.7986 

    12.9579 

    12.4992 

    12.6985 

    12.8901 

    13.0740 

   12.4976 

   12.6968 

   12.8884 

   13.0722 

   4d   0.05 

  0.10 

  0.15 

  0.20 

    12.0105 

    12.1143 

    12.2176 

    12.3204 

    12.0981 

    12.2857 

    12.4672 

    12.6432 

   12.0983 

   12.2850 

   12.4664 

   12.6426 

   4f   0.05 

  0.10 

  0.15 

  0.20 

    11.6417 

    11.6456 

    11.6518 

    11.6603 

    11.8209 

    11.9981 

    12.1718 

    12.3421     

   11.8208 

   11.9980 

   12.1717 

   12.0421 
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Table 2: Comparative analysis of rotational-transition frequencies for HF with the generalized Morse potential 

 

 1    Present result (NU) (cm
-1

) SUSY method [33] (cm
-1

) Experimental Result 

[36] (cm
-1

) 

1 40.92 41.56 41.11 

2 81.85 83.07 82.07 

3 121.46 124.48 122.92 

4 162.08 165.74 163.54 

5 202.10 206.80 203.93 

6 242.57 247.62 243.93 

7 282.06 288.15 283.57 

8 321.44 328.33 322.85 

9 360.56 368.13 361.74 

10 399.14 407.49 400.05 

 
4.0   Discussion 

 
In order to verify how well the approximation scheme performed, bound state eigen values of the obtained energy equation 

(18) for the generalized Morse potential for various 𝑛 and   quantum numbers in the 2p, 3p, 3d, 4p, 4d and 4f states were 

computed. The computed eigen values obtained from this study were compared with those from other methods (Table 1). It 

was observed that the eigen values obtained for the different states compared well with eigen values from other methods. 

The rotational-transition frequencies for HF was computed and the experimental data of molecular constants for the 

computation was obtained from literature [36]: 𝛼 = 1.440𝑐𝑚−1, 𝑟𝑒 = 1.2746

0

A  and 
𝐷𝑒

ℎ𝑐 = 62,773𝑐𝑚−1. Table 2 shows a 

comparative analysis of the results of the rotational-vibrational frequencies obtained from this study with the results of Zhang 

et al. [33] who used the super-symmetric approach and experimental results by Lonardo and Douglas [36]. It can be observed 

from Table 2 that the results from this study obtained from the paramertric Nikiforov-Uvarov technique alligned better well 

with experimental results when compared with the results of Zhang et al. [33]. 

 

Conclusion 

In this paper, the bound state solution of the Schrӧdinger equation with the generalized Morse potential model using the 

parametric Nikiforov-Uvarov method was studied. The improved approximation scheme was employed to deal with the 

centrifugal term, eigen values and rotational-vibration energy for diatomic molecules represented by the generalized Morse 

potential were obtained analytically. The eigen values obtained from this study, compare favourably well with those obtained 

from other methods and the computed rotational-transition frequencies for the HF diatomic molecule are in better agreement 

with those obtained using the SUSY method. This shows that the parametric Nikiforov-Uvarov method is a more efficient 

and reliable method than the SUSY method. 
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