Bound State Solutions of Duffin-Kemmer-Petaiu Equation with Yukawa Potential

C. A. Onate *
Department of Physics, University of Ilorin, Ilorin, Nigeria

Abstract

The approximate analytic solutions of the Duffin-Kemmer-Petiau equation with Yukawa potential are obtained using SUSY QM by applying the Pekeris approximation type. The energy equation is obtained for each $J=0$ and $J \neq 0$, and numerical results are obtained for $J \neq 0$ for various values of angular quantum number n, total angular momentum J and some parameters using super-symmetric quantum mechanics (SUSY QM).

1. Introduction

The Duffin-Kemmer-Petiau equation introduced by Duffin, Kemmer and Petiau [1] is a relativistic equation that describes spin-0 and spin-1 particles in the description of the Standard Model [2]. There has been a revival of interest in the DKP equation and its relevance to different problems in the area of particle and nuclear physics. An understanding of this equation reveals that the exact analytical solutions of the relativistic wave equations are important in the relativistic quantum mechanics since the wave contains all the necessary information to describe a quantum system and the investigation of particles on the basis of single equation in the relativistic regime [3]. However, there are only a few potentials for which the relativistic Dirac, Klein-Gordon and Duffin-Kemmer-Petiau equations can be analytically solved.

The Duffin-Kemmer-Petiau equation under a vector potential possessed the same mathematical structure as that of the Klein-Gordon equation [4]. With that similar mathematical structure, various authors have solved different problems of the DKP equation with certain potentials. Fainberg and Pimentel [5,6] clearly presented an equivalence between the Klein-Gordon and Duffin-KemmerPetiau theories of physical S-matrix elements in the case of charged scalar particles interacting in minimal way with quantized electromagnetic field. Hassanabadi et al. [7] presented the Duffin-Kemmer-Petiau equation under a scalar Coulomb interaction. Kasri and Chetouani [8] obtained the
*onateca12@gmx.us
bound state energy eigen-values for the relativistic DKP Oscillator and DKP Coulomb potentials using the Exact quantization rule. Chargui et al. [9] solved Duffin-Kemmer-Petiau equation with a Pseudo-scalar linear plus Coulomb-like potential in two-dimensional space-time. Hamzavi and Ikhdair [10] solved the DKP equation for a vector Deformed Woods-Saxon potential for any J state using Nikiforov-Uvarov method. Yusuk et al. [11] presented an application of the relativistic Duffin-Kemmer-Petiau equation in the presence of a vector deformed Hulthén potential for spin-0 particles using Nikiforov-Uvarov method.

Since the Duffin-Kemmer-Petiau equation is being increasingly used to describe the interactions of the relativistic spin-0 and spin-1 bosons, it would be interesting to probe whether the DKP equation is amendable to the approximate solutions in the framework of SUSY QM.

The DKP formalization is discussed in Sec. 2 and the solution of DKP equation with Yukawa potential along with the numerical results are given in Sec. 3.

2. DKP Equation

The Duffin-Kemmer-Petiau Hamiltonian for scalar and vector interactions [7] is

$$
\begin{equation*}
\left[\beta \cdot \vec{P} c+m c^{2}+U_{s}+\beta^{0} U_{V}^{0}\right] \psi(r)=\beta^{0} E \psi(r) \tag{1}
\end{equation*}
$$

Where,

$$
\begin{equation*}
\psi(r)=\binom{\psi_{\text {upper }}}{i \psi_{\text {lower }}} \tag{2}
\end{equation*}
$$

the upper and lower components, respectively, are

$$
\psi_{\text {upper }} \equiv\binom{\emptyset}{\varphi}, \quad \psi_{\text {lower }} \equiv\left(\begin{array}{l}
A_{1} \tag{3}\\
A_{2} \\
A_{3}
\end{array}\right)
$$

β^{0} is the usual 5×5 matrix and U_{s}, U_{v}^{0} represent the scalar and vector interactions. The equation in $(3+0)$ dimensions $[1,3]$ is written as

$$
\begin{equation*}
\left(m c^{2}+U_{s}\right) \emptyset=\left(E-U_{v}^{0}\right) \varphi+\hbar c \vec{\nabla} \cdot \vec{A} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\vec{\nabla} \emptyset=\left(m c^{2}+U_{s}\right) \vec{A}, \quad\left(m c^{2}+U_{s}\right)=\left(E-U_{v}^{0}\right) \emptyset \tag{5}
\end{equation*}
$$

Where, $\vec{A}=\left(A_{1}, A_{2}, A_{3}\right) . \psi$ in Eqn. (4) is a simultaneous eigen-function of J^{2} and J_{3}, i.e.,

$$
J^{2}\binom{\psi_{\text {upper }}}{\psi_{\text {lower }}}=\left[\begin{array}{c}
L^{2} \psi_{\text {upper }} \tag{6}\\
(L+S)^{2} \psi_{\text {lower }}
\end{array}\right]=J(J+1)\binom{\psi_{\text {upper }}}{\psi_{\text {lower }}}
$$

$$
J_{3}\binom{\psi_{\text {upper }}}{\psi_{\text {lower }}}=\left[\begin{array}{c}
L_{3} \psi_{\text {upper }} \tag{7}\\
\left(L_{3}+S_{3}\right) \psi_{\text {lower }}
\end{array}\right]=M\binom{\psi_{\text {upper }}}{\psi_{\text {lower }}}
$$

and the general solution is considered as [7]

$$
\psi_{J, M}=\left[\begin{array}{c}
f_{n, J}(r) Y_{J, M}(\Omega) \tag{8}\\
g_{n, l}(r) Y_{J, M}(\Omega) \\
i \Sigma_{L} h_{n, J}(r) Y_{J, L, 1}^{M}(\Omega)
\end{array}\right]
$$

Where, spherical harmonics $Y_{J, M}(\Omega)$ are of the order $J . Y_{J, L, 1}^{M}(\Omega)$ are normalized vector spherical harmonics, and $f_{n J}, g_{n J}$ and $h_{n J L}$ represent the radial wave functions. The equations above yield the coupled differential equation [12]

$$
\begin{equation*}
\left(E_{n, J}-U_{v}^{0}\right) F_{n, J}(r)=\left(m c^{2}+U_{s}\right) G_{n, J}(r) \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& {\left[\frac{d F_{n, J}(r)}{d r}-\frac{J+1}{r} F_{n, J}(r)\right]=\frac{1}{\alpha J}\left(m c^{2}+U_{s}\right) H_{1, n, J}(r)} \\
& {\left[\frac{d F_{n, J}(r)}{d r}+\frac{J}{r} F_{n, J}(r)\right]=\frac{1}{\alpha J}\left(m c^{2}+U_{s}\right) H_{-1, n}(r)} \tag{10}
\end{align*}
$$

$$
\begin{align*}
& -\alpha J\left(\frac{d H_{1, n, J}(r)}{d r}+\frac{J+1}{r} H_{1, n, J}(r)\right) \\
& \quad=\zeta\left[\frac{d H_{-, 1, n, J}(r)}{d r}-\frac{J}{r} H_{-, 1, n, J}(r)\right] \\
& \quad=\frac{1}{\hbar c}\left[\left(m c^{2}+U_{s}\right) F_{n, J}(r)-\left(E_{n, J}-U_{v}^{0}\right) G_{n, J}(r)\right] \tag{12}
\end{align*}
$$

This gives the equation

$$
\begin{align*}
& \frac{d^{2} F_{n, J}(r)}{d r^{2}}\left[1+\frac{\zeta^{2} j}{\alpha^{2} j}\right]-\frac{d F_{n, J}(r)}{d r}\left[\frac{U_{s}^{\prime}}{\left(m+U_{s}\right.}\left(1+\frac{\zeta^{2} j}{\alpha^{2} j}\right)\right] \\
& \quad+F_{n, J}(r)\left\{-\frac{J(J+1)}{r^{2}}\left(1+\frac{\zeta^{2} j}{\alpha^{2} j}\right)\right. \\
& \quad+\frac{U_{s}^{\prime}}{\left(m+U_{s}\right)}\left(\frac{J+1}{r}-\frac{\zeta^{2} j}{\alpha^{2} j} \frac{J}{r}\right) \\
& \left.\quad-\frac{1}{\alpha^{2} j}\left[\left(m+U_{s}\right)^{2}-\left(E_{n, l}-U_{v}^{0}\right)^{2}\right]\right\}=0 \tag{13}
\end{align*}
$$

Where, $\quad \alpha j=\sqrt{\frac{J+1}{2 J+1}}, \quad f_{n, j}(r)=\frac{F(r)}{r}$,

$$
\begin{equation*}
g_{n, j}(r)=\frac{G(r)}{r}, \quad h_{n, j J \pm 1}=H_{ \pm \frac{1}{r}} \tag{and}
\end{equation*}
$$

$\zeta J=\sqrt{J /(2 J+1)}$.
When U_{s} we recover the well-known formula [14,15]

$$
\begin{equation*}
\left[\frac{d^{2}}{d r^{2}}-\frac{J(J+1)}{r^{2}}+\left(E_{n, J}-U_{v}^{0}\right)^{2}-m^{2}\right] F_{n, J}(r)=0 \tag{14}
\end{equation*}
$$

3. DKP Equation with Yukawa Potential

Given the Yukawa potential $[16,17]$ as

$$
\begin{equation*}
V_{Y P}(r)=U_{v}^{0}=-\frac{V_{0} e^{-\alpha r}}{r} \tag{15}
\end{equation*}
$$

Due to the presence of the spin-orbit coupling term in Eqn. (14), the equation cannot be solved exactly. In order to obtain the approximate analytical solutions of Eqn. (14) with arbitrary J values, one must take an approximation to the
centrifugal term. The approximation applied is given as $[18,19]$

$$
\begin{equation*}
\frac{1}{r^{2}} \approx \frac{\alpha^{2}}{\sinh ^{2}(\alpha r)} \tag{16}
\end{equation*}
$$

The approximation given in Eqn. (16) can only be a good approximation to the centrifugal term when the potential parameter α becomes small [18]. Now, substituting Eqns. (15) and (16) into Eqn. (14), we obtain Schrödinger-like equation

$$
\begin{equation*}
\frac{d^{2} F_{n, J}(r)}{d r^{2}}=\left[V_{e f f}-\bar{E}_{n, J}\right] F_{n, J}(r) \tag{17}
\end{equation*}
$$

Where we have used the following substitutions

$$
\begin{align*}
A & =-4 \alpha V_{0}\left(E_{n, J}-\alpha V_{0}\right) \tag{18a}\\
B & =4 \alpha^{2}\left[J(J+1)-V_{0}^{2}\right] \tag{18b}\\
\bar{E}_{n, J} & =E_{n, J}^{2}-m^{2} \tag{18c}\\
V_{e f f} & =\frac{A e^{-2 \alpha r}}{1-e^{-2 \alpha r}}+\frac{B e^{-2 \alpha r}}{\left(1-e^{-2 \alpha r}\right)^{2}} \tag{18d}
\end{align*}
$$

We employ the basic concept of the supersymmetric quantum mechanics method and shape invariance approach to solve Eqn. (17) [20]. The ground state function can then be written in the form

$$
\begin{equation*}
F_{0, J}(r)=N \exp \left(-\int W(r)\right) \tag{19}
\end{equation*}
$$

Where, N is the normalization constant and $W(r)$ is called the super-potential in the super-symmetric quantum mechanics [20]. In other to make the right-hand side of Eqn. (17) compatible with the left-hand side that enable us proceed to the next step and obtain the partner potential, we propose the super-symmetric super-potential of the form

$$
\begin{equation*}
W(r)=P-\frac{Q}{1-e^{-2 \alpha r}} \tag{20}
\end{equation*}
$$

With the comparison of the two sides of Eqn. (17), which is the Riccati equation with a solution of the form given as super-symmetric super-potential of Eqn. (20), expressed in the form

$$
\begin{equation*}
W^{2}(r) \pm W^{\prime}(r)=V_{e f f}-\bar{E}_{n, J} \tag{21}
\end{equation*}
$$

We obtain now the following equations

$$
\begin{align*}
& Q=\alpha \pm \sqrt{\alpha^{2}+4 \alpha^{2}\left[J(J+1)-V_{0}^{2}\right]} \tag{22}\\
& P=\frac{-4 \alpha V_{0}\left(E_{n, J}-\alpha V_{0}\right)-Q^{2}}{2 Q} \tag{23}
\end{align*}
$$

and

$$
\begin{equation*}
P^{2}=-\bar{E}_{n, J} \tag{24}
\end{equation*}
$$

We can now find the Hamiltonian of Eqn. (17) as it is related to the super-potential via $[21,22]$

$$
\begin{equation*}
V_{e f f}^{ \pm}(r)=W^{2}(r) \pm W^{\prime}(r) \tag{25}
\end{equation*}
$$

If the shape invariance condition exists, all desired results are directly obtained. The latter exists if [23]

$$
\begin{equation*}
V_{e f f}^{+}\left(a_{0}, r\right)=V_{e f f}^{-}\left(a_{1}, r\right)+R\left(a_{1}\right) \tag{26}
\end{equation*}
$$

Where, a_{1} is a new set of parameters uniquely determined from the old set a_{0} via the mapping F : $a_{0} \mapsto a_{1}=F\left(a_{0}\right)$ and the residual term $R\left(a_{1}\right)$ does not include the variable r. Provided that the above is satisfied, everything desired is given via the following relations [24-26]

$$
\begin{align*}
& H_{s}=-\frac{\partial^{2}}{\partial r^{2}}+V_{e f f}^{-}\left(a_{s}, r\right)+E_{s} \tag{27a}\\
& H_{s} \phi_{n-s}^{-}\left(a_{s}, r\right)=E_{n} \phi_{n-s}^{-}\left(a_{s}, r\right) \quad n \geq s \tag{27b}\\
& \phi_{n-s}^{-}\left(a_{s}, r\right)=\frac{A_{s}^{\dagger}}{\sqrt{E_{n}-E_{s}}} \phi_{n-(s+1)}^{-}\left(a_{s+1}, r\right) \tag{27c}\\
& A_{s}^{\dagger}=-\frac{\partial}{\partial r}+W\left(a_{s}, r\right) \tag{27d}\\
& E_{n}=\sum_{s=1}^{n} R\left(a_{s}\right) \tag{27e}
\end{align*}
$$

Then, the super-symmetric partner potentials given in Eqn. (25) are fully written by substituting Eqn. (20) into Eqn. (25)

$$
\begin{align*}
V_{e f f}^{+}(r)= & P^{2}+\frac{Q^{2}}{\left(1-e^{-2 \alpha r}\right)^{2}}-\frac{2 P Q}{1-e^{2 \alpha r}}+\frac{2 \alpha Q e^{-2 \alpha r}}{\left(1-e^{-2 \alpha r}\right)^{2}} \\
& =P^{2}+\frac{Q(Q-2 P)}{1-e^{-2 \alpha r}}+\frac{Q(Q+2 \alpha) e^{-2 \alpha r}}{\left(1-e^{-2 \alpha r}\right)^{2}} \tag{28}\\
V_{e f f}^{-}(r)= & P^{2}+\frac{Q^{2}}{\left(1-e^{-2 \alpha r}\right)^{2}}-\frac{2 P Q}{1-e^{2 \alpha r}}-\frac{2 \alpha Q e^{-2 \alpha r}}{\left(1-e^{-2 \alpha r}\right)^{2}} \\
& =P^{2}+\frac{Q(Q-2 P)}{1-e^{-2 \alpha r}}+\frac{Q(Q+2 \alpha) e^{-2 \alpha r}}{\left(1-e^{-2 \alpha r}\right)^{2}} \tag{29}
\end{align*}
$$

If these partner potentials satisfy the relationship

$$
\begin{equation*}
V_{e f f}^{+}\left(r, a_{0}\right)=V_{e f f}^{-}\left(r, a_{1}\right)+R\left(a_{1}\right) \tag{30}
\end{equation*}
$$

Where, $a_{0}=Q$ and the Hamiltonian is shapeinvariant. We can easily say $a_{1}=f\left(a_{0}\right)=a_{0}-2 \alpha$. In simpler words, the relation in Eqn. (30) means that these potentials are the same apart from a constant [20]. We now generalize, $a_{n}=a_{0}-2 \alpha n$, where in our study, $Q=a_{0}$. In terms of the parameters of the problem, it can easily be written

$$
\begin{aligned}
R\left(a_{1}\right)= & \left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{0}^{2}}{2 a_{0}}\right)^{2} \\
& -\left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{1}^{2}}{2 a_{1}}\right)^{2}
\end{aligned}
$$

We have now the shape-invariance condition via $Q \rightarrow Q-2 \alpha$. According to [27-29], the energy of the system is obtained via the summation $\sum_{k=1}^{n} R\left(a_{k}\right)$. Therefore, it can first be deduced

$$
\begin{aligned}
R\left(a_{2}\right)= & \left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{1}^{2}}{2 a_{1}}\right)^{2} \\
& -\left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{2}^{2}}{2 a_{2}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
R\left(a_{3}\right)= & \left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{2}^{2}}{2 a_{2}}\right)^{2} \\
& -\left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{3}^{2}}{2 a_{3}}\right)^{2} \\
R\left(a_{4}\right)= & \left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{3}^{2}}{2 a_{3}}\right)^{2} \\
& -\left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{4}^{2}}{2 a_{4}}\right)^{2}
\end{aligned}
$$

.

$$
\begin{align*}
R\left(a_{n}\right)= & \left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{n-1}^{2}}{2 a_{n-1}}\right)^{2} \tag{31}\\
& -\left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{n}^{2}}{2 a_{n}}\right)^{2}
\end{align*}
$$

Which, determines the spectrum as

$$
\begin{gather*}
\overline{\bar{E}}_{0 J}=0 \tag{32}\\
\bar{E}_{n J}^{-}=\sum_{k=1}^{n} R\left(a_{k}\right)=\left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{0}^{2}}{2 a_{0}}\right)^{2} \\
-\left(\frac{-4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)-a_{n}^{2}}{2 a_{n}}\right)^{2} \tag{33}
\end{gather*}
$$

Considering Eqn. (29), we obtain

$$
\begin{equation*}
\bar{E}_{n J}=\bar{E}_{n J}^{-}+\bar{E}_{0 J}=-\left(\frac{4 \alpha V_{0}\left(E_{n J}-\alpha V_{0}\right)+a_{n}^{2}}{2 a_{n}}\right)^{2} \tag{34}
\end{equation*}
$$

Which by means of Eqn. (18c), is obtained as

$$
\begin{align*}
& E_{n J}^{2}-M^{2}= \\
& -\left[\frac{2 V_{0}\left(E_{n J}-\alpha V_{0}\right)+\frac{\alpha}{2}\left[2 n-1+\sqrt{(1+2 J)^{2}-\left(2 V_{0}\right)^{2}}\right]^{2}}{2 n-1+\sqrt{(1+2 J)^{2}-\left(2 V_{0}\right)^{2}}}\right] \tag{35}
\end{align*}
$$

In order to obtain the non-normalized wave function via standard function analysis, we define a variable of the form $x=\exp (-2 \alpha r)$. Substitute this transformation into Eqn. (17), we then have a second-order differential equation

$$
\begin{equation*}
\frac{d^{2} F_{n J}(x)}{d x^{2}}+\frac{1}{x} \frac{d F_{n J}(x)}{d x}+\frac{A+B x+C x^{2}}{(x(1-x))^{2}} F_{n J}(x)=0 \tag{36}
\end{equation*}
$$

Where

$$
\begin{align*}
& A=\frac{E_{n J}^{2}-M^{2}}{4 \alpha^{2}} \\
& B=\frac{E_{n J} V_{0}}{\alpha}-J(J+1)-\frac{E_{n J}^{2}+M^{2}}{2 \alpha^{2}} \\
& C=\frac{E_{n J}^{2}-M^{2}}{4 \alpha^{2}}-\frac{E_{n J} V_{0}}{\alpha}+V_{0}^{2} \tag{37}
\end{align*}
$$

From the transformation, the following equation can be written

$$
\begin{equation*}
F_{n J}(x)=x^{\eta}(1-x)^{\delta} U_{n J}(x) \tag{38}
\end{equation*}
$$

Where

$$
\begin{align*}
& \eta=\left(\frac{E_{n J}^{2}-M^{2}}{4 \alpha^{2}}\right) \text { and } \\
& \delta=1+\left(1+4 J(J+1)-4 V_{0}^{2}\right)^{\frac{1}{2}} \tag{39}
\end{align*}
$$

Now, let $\varepsilon=-\eta$, then Eqn. (36) becomes a new second-order homogeneous linear differential equation of the form

$$
\begin{gather*}
U^{\prime \prime}(x)+U^{\prime}(x)\left[\frac{(2 \varepsilon+1)-x(2 \varepsilon+\delta+1)}{x(1-x)}\right] \tag{40}\\
-U(x)\left[\frac{(2 \varepsilon+\delta)^{2}+C}{x(1-x)}\right]
\end{gather*}
$$

Consequently, the total radial wave function is obtain as

$$
F_{n J}(x)=N_{n, J} x^{\eta}(1-x)^{\delta} 2 U_{n J}(-n, n+(2 \varepsilon+2 \delta), 2 \varepsilon+1, x)
$$

Table 1: Bound state eigen-value $E_{n J}(\mathrm{MeV})$ with $m=938(\mathrm{MeV}), \alpha=0.65$ and $V_{0}=10$.

n	J	$E_{n, J}$	$E_{n, J}$
0	0	-160.3625151	182.1014974
	1	-156.9975596	178.4538035
	2	-150.5979486	171.5084237
	3	-141.7535645	161.8916920
1	0	-160.6068168	181.8456200
	1	-157.2323107	178.2079104
	2	-150.8148186	171.2812398
	3	-141.9463564	161.6897366
2	0	-425.0692502	440.7660604
	1	-418.6791465	434.3277452
	2	-406.2715828	421.8161346
	3	-388.5583503	403.9302076
3	0	572.4071480	583.3390995
	1	-566.8584775	577.8365280
	2	-555.8898835	566.9518625
	3	-539.7682615	550.9379055

Table 2: Bound state eigen-value $E_{n J}(\mathrm{MeV})$ with $V_{0}=5$ and $m=938(\mathrm{MeV})$.

α	$E_{0,1}$	$E_{1,1}$	$E_{2,1}$	$E_{2,2}$
0.10	-103.4388645	-103.4508153	-296.7999051	-296.2177896
	104.4473920	104.4354331	297.6740534	297.0920518
0.20	-116.9209014	-116.9503847	-330.8604638	-328.3384378
	118.9909369	118.9613830	332.5858970	330.0626740
0.30	-135.1895476	-135.2455087	-373.0995402	-366.8999680
	138.4339998	138.3777851	375.6518430	369.4492323
0.40	-160.5692332	-160.6665870	-424.9447519	-412.8870142
	165.1761845	165.0781844	428.2720094	416.2168957
0.50	-197.0640905	-197.2289212	-487.4438450	-467.0172860
	203.3215618	203.1553580	491.4300992	471.0389424
0.60	-251.9231435	-252.2035845	-560.4738965	-529.3157690
	260.2471186	259.9640956	564.8964205	533.8669365

References

[1] R. J. Duffin, Phys. Rev. 54 (1938).
[2] V. Yu, Gravitation and Cosmology 12, 205 (2006).
[3] N. Kemmer, Proc. R. Soc. London Ser. A 166, 127 (1938).
[4] Z. C. Anton, Relativistic Quantum Mechanics, in Introduction to Quantum Field Theory (World Scientific, 2002).
[5] V. Ya. Fainberg and B. M. Pimentel, Phys. Lett. A 271, 16 (2000).
[6] V. Ya. Fainberg and B. M. Pimentel, Theor. Math. Phys. 124, 1234 (2000).
[7] H. Hassanabadi, B. H. Yazarloo, S. Zarrinkamar and A. A. Rajabi, Phys. Rev. 84, 064003 (2011).
[8] Y. Kasri and L. Chetouani, Int. J. Theor. Phys. 47, 2249 (2008).
[9] Y. Chargui, A. Trabelsia and L. Chetouani, Phys. Lett. A 374, 2907 (2010).
[10] M. Hamzavi and S. M. Ikhdair, DOI 10.1007/s00601-012-0452-9.
[11] F. Yusuk, C. Berkdemir, A. Berkdemir and C. Önem, Phys. Scr. 71, 340 (2005).
[12] M. Merad, Int. J. Theor. Phys. 46, 2105 (2007).
[13] A. Okninski, Int. J. Theor. Phys. 50, 729 (2011).
[14] Y. Nedjadi and R. C. Barrett, J. Phys. G: Nucl. Part. Phys. 19, 57 (1993).
[15] K. Sogut and A. Havare, J. Phys. A: Math. Theor. 42, 225204 (2010).
[16] M. Hamzavi, M. Movahedi, K. E. Thylwe and A. A. Rajabi, Chin. Phys. Lett. 29, 080302 (2012).
[17] M. Azizi, N. Saleh and A. A. Rajabi, High Erg. Phys. Dx.doi.org/10.1155/2013/310392.
[18] S. M. Ikhdair, Phys. Scr. 83, 015010 (2011).
[19] W. C. Qiang and S. H. Dong, Phys. Lett. A 368, 13 (2007).
[20] C. S. Jia, Y. Li, Y. Sun, J. Y. Liu and L. T. Sun, Phys. Lett. A 311, 115 (2003).
[21] S. Zarrinkamar, A. A. Rajabi and H. Hassanabadi, Phys. Scr. 83, 015009 (2011).
[22] C. A. Onate, K. J. Oyewumi and B. J. Falaye, African Rev. Phys. 8, 0020 (2013).
[23] H. Hassanabadi, L. L. Lu, S. Zarrinkamar, G. Liu and H. Rahimov, ACTA Phys. Polo. 122, 1111 (2012).
[24] K. J. Oyewumi and C. O. Akoshile, Eur. Phys. J. A 45, 311 (2010).
[25] S. Zarrinkamar, A. A. Rajabi and H. Hassanabadi, Ann. Phys. 325, 2522 (2010).
[26] H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar and H. Rahimov, Mod. Phys. Lett. A. 26, 2703 (2011).
[27] H. Hassanabadi, E. Maghsoodi and S. Zarrinkamar. Eur. Phys. J. Plus. 127, 31 (2012).
[28] C. A. Onate, K. J. Oyewumi and B. J. Falaye, Few. Body Syst. DOI 10.1007/s00601-013-0731-0.
[29] B. Bagchi, Supersymmetry in Quantum and Classical Mechanics (Chapman and Hall/CRS, 2000).

