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ABSTRACT

Using the supersymmetric quantum mechanics (SUSY) approach, we obtained analytical approximate solutions to the Dirac equation
with an improved Tietz diatomic potential function under spin and pseudospin symmetries. The energy eigenvalues equation and the
corresponding wave spinor for the two symmetries have been explicitly obtained. The non-relativistic limit of the spin symmetry has
been obtained. The solution of Morse, Deng-Fan, and Rosen-Morse were obtained by changing the numerical value of g We have

also obtained the thermodynamic properties of a system under the improved Tietz potential function.
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1. INTRODUCTION

Solving Relativistic symmetries of the Dirac Hamiltonian had
been discovered many years ago. These symmetries however,
in the recent time have been recognized empirically in
nuclear and hardronic spectroscopies[1]. The analytical
solutions of the relativistic Dirac equation plays a crucial role
in quantum mechanics because, they contain all the
necessary information required to understand the quantum
behaviour of the Dirac particles which describe a relativistic
particle with -1/2 [2]. Many authors have investigated the
Dirac equation under spin and pseudospin symmetries in the
presence or absence of coulomb tensor interaction for most
of the physical potential models such as Manning-Rosen
potential [3, 4], Ekart potential [5], Morse potential [6],
Pseudoharmonic potential [7, 8],

Coulomb potential [9, 10], double ring-shaped Kratzer and
Oscillator potentials [11], Yukawa potential [12], Hulthén
potential [13], Tietz potential [14], Hyperbolic potential [15]
etc. The concept of pseudospin symmetry was first
introduced by Hecht and Adler in 1969. The pseudospin
symmetry was considered in the context of deformation,
superdeformation [16], magnetic moment interpretation,
identical band [17] and effective shell-model coupling
scheme [18]. The pseudospin symmetry limit occurs when
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2(r)=V(r)+S(r) = constant [19, 20]. However, the spin
symmetry is relevant to mesons [19]. Spin symmetry limit
occurs when A(r) =V(r)-S(r) = constant [19, 20]. Despite
the effort of various authors in both relativistic and non-
relativistic wave equations, there is no report on the
improved Tietz potential with thermodynamic properties yet.

Motivated by the interest in the interaction of fermionic
particle within the thermodynamic properties under a system
in the field of diatomic potentials, we attempt to study the k
state

solutions for the fermionic massive spin -1/2 particles
interacting with the improved Tietz

diatomic potential function. The improved Tietz diatomic
potential function is given as [21, 22]

ar, 2
UlT(r):De[l—e +q} .

€ *a (1)

This potential is related to other diatomic potential models

such as the Morse potential (putq_o) and Deng-Fan

potential (putq_ 1). In the next section, we briefly
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discuss Dirac equation. In section 3 and 4, we present bound
states solutions and thermodynamic properties of a particle
under improved Tietz potential respectively. In section 5 and
6, we discuss results and concluding remark.

2. Dirac Equation
The Dirac equation for fermionic massive spin -1/2 particle
moving in an attractive scalar potential S() and repulsive

vector potential V(Nina spherical coordinate, is given by [1,
4,23]

[a.p+B(M +S(r))-(E-V(r)) J¢(r)=0, 2)

pD=-il] . E
where P 10 is the momentum operator, © denote the

relativistic energy of the system, ® and B are 4% 4 ysual
Dirac matrices [1]. For a particle in a spherical field [4], the

total angular momentum operator J and the spin-orbit

matrix operator k:(U'L+1)’ where g and L are the Pauli

matrix and orbital angular momentum respectively, commute

with the Dirac Hamiltonian. The eigenvalues of k are

k=-(j+1/2) (802 Pa€tc) and

for the unaligned spin (pl’z’d3’2’etc). The

complete set of conservative quantities can be chosen as
(H.K,32,3,)

for the aligned spin
k=(j+1/2)

[4]. The Dirac spinor is

Fnk(r) |

" (r):[fnk(r)j_ Y69
" gnk(r) Gnk(r)Y_i (9 19) '
oM

3)

where Fa(r) and Guc(r) are the radial wave functions of the

Y,,(6.9)

upper and lower components respectively with and

Yin(6:9) for spin and pseudospin spherical harmonics coupled
to the angular momentum on the Z= axis [1]. Now
substitute Eg. (3) into Eg. (2), we recast the following
differential equations

&« _

—5+5 [F0) S(M+E, V() +0)) G, (1),
a° r ()
& «

—57 5 [GuD) =(M=E, VO +90) R, (),
a“ r (5)

which later give

{gz —K(l:]) —(M+Em —A(r])(M—Em +zr])}Fm(r)
[ a(r)

+1 M+ EirfA(r)(g +§J Fulr)=0

(6)
«(k+1)=£(0+1), r,(0,0)

for
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az
d> ()

- M—E:LZ(r)L(?r_/r(j Gulr)=0

(A3 st -5, )

(7)

for K(K_l):z(ﬂl)’ ro (0,%0) . It is noted that
A(r) =V(r)=S(r) ;g Z(r) =V (r)+S(r).

3. Bound State Solutions
In this section, we obtained the energy eigenvalues and wave
functions for both the spin and pseudospin symmetries.

3.1: The Spin Symmetry Limit:
dA(r)

Under the spin symmetry, dr s=constant [24,
25] with (D as the Improved Tietz diatomic potential

(Y7 ("-) Thus, we recast Eq. (6) in the form:

{:TZZ—K(:_(::L) —UIT(r)(M + EnK _Cs)} an(r)

H(M+E, ~C)(M-E )} Fu(r)=0. g

Eq. (8) can be solved analytically only for s-wave case due to
k(k+1)

the spin-orbit coupling term f°  Therefore, we shall

employ a suitable approximation scheme [22, 24] to the spin-

orbit coupling term. For a short-range potential, the following

formula:

h

A(r)=C

(€)
1
is a good approximation to r* This approximation was used

to study arbitrary l - state pseudo-Hulthén wave functions
[22]. The parameters in Eq. (9) are obtain as follows:

_ —aTe 2 2ar,
1+3(1 ar,+ 08 +ge )

G = 2.2
a’r
SOl 1 2y @20
—-2qare ™ +q°are ™
2,2 1
a’r; (10)
6 _ _ 0 _ 2 are _ ~3a720ar,
c - 6(gar,~X-e" - Fe " - g’e ™)
1 2,2
acr,
_‘_20,(2reeare — q3e—2are)
2,2
c = GQ(33]+ kﬂre + 2]26—me )+ 392me + 1a4e—ZHre)
2 aZrez
+2qar,(g°e ™" —e™ )+ ar g'e?™ +ar ™"
a¥? '

(12)

Substituting potential (1) and approximation (9) into Eq. (8),
we obtain the following:
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d’F, (r)
dr?

=| V5 (N -E5 Ry (n),
[V& (N -Ex R (r) 3

where we have used the following for simplicity

KIDG a0 (M +E, ~C)
:

Ve‘f(s}(r): & +q
k(k :-21)02 + Deb2 (M + En/( _Cs)
ar 2 !
(e +a) 1)
-E; =[(M-E,)+D,|(M +E, -C,)
L kk+1C, .
r’ b=¢€" +q. (15)

In other to obtain the solution of Eq. (13), we use the
essential concept of the supersymmetric quantum mechanics
and shape invariance formalism [4,25,26] which enable us to
write the ground-state wave function for the upper
component as

Fo (1) = ep(~fQ(r) ). 9
where Q(r) is called the superpotential function in
supersymmetric quantum mechanics and shape invariance

approach. Inserting Eq. (16) into Eq. (13) results to the
following equation

Q) —Q(r) =V (N -E. (17)
Since it is required that the superpotential function should be

made compatible with the right-hand side of the nonlinear
Riccati equation (17), we now propose a superpotential

function Q(r) of the form:
,30
B-
Q(r)=8-= e (18)

where # and b are two parametric constants to be
determine later. In view of the superpotential of
equation(18), we can now construct the two partner

potentials Va0 as follows

U=+ XX = g -

268, b (By*a)e” +fi(1-¢")

eta (¢ +a) o)
dQ(r

U =Q (-2 = -

200, +/Bo(/30_ ) +/30 (l_em)

€+a (e +a)f (20)

Now, comparing Eq. (17) with Eq. (13), we deduce the values
of the two parametric constants and establish the
relationship between the constants and other variables:

for constants :

2 _ s
ﬂ - Enk ’ (21)
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266, =200, (M +E, ~C,) - K*2G
fe (22)
£ =DIF (M+E, -C) g+ KD
fe (23)
af, =0. (24)

In other to obtain the value of each of these parameters and
establish the relationship between them as stated before, it
is interested to note that the interest of the author lies only
in the bound state solutions which demand that the radial

part of the wave function Fa must satisfy the boundary
conditions

Fnk(r) _{O‘r - ©
r oo, I — 0 (25)
Considering the regularity conditions and their consequences

(i.e. 'B>O”8°>O) and the simplification of equations (21),

(22), (23) and (24), the value of ﬂ and ﬂo are obtain as

A= ”{ 1+— [Kk+C DB (MHE,~C) ] |
(26)

M(CC) sp v, )

- %

(27)

From the two partner potentials, we can obtain the following
relationship

U,(r,a,)=U_(r,a)+R(&), (28)

where & is a new set of parameter uniquely determine from

an old set of parameter % and % is a function of ai, i.e.

3 = f(a)= ™ The residual term R(a) is independent

of the variable I However, Eq. (28) shows that the partner
potentials are shape invariant. By using the shape invariant
approach [27], we can determine exactly, the energy

u_(r)

eigenvalues equation of the shape invariant potential
after obtaining the following relationship

Fe(q):(m;zé)—ﬂz{(mf)—af} .
R(az)::(mz)_ﬂz{(mf—ﬂ .
R%) :(Z%j:) _aﬂ {(2@%:’5) _ﬂt. (31)

Following the formalism of shape invariance approach, the
energy levels of the system can be determine as
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Eﬁk‘ES( )+E0k ZR( )+Et51k

_ (Zﬂﬁo"'ag)_af

2
* (32)
This gives energy equation for the spin symmetry as
. k(k+1)C
—E5,2r|k+M2+A/+ ( rez) >=
k
0(1-21-/%)
(33a)
4
A= [t KGRI (MHE, -G
ar
e (33b)
A; =bD,(2+b)(M +E, -C,), (33

A, :Cs(Enk —M)+De(M +E, _Cs)' (33d)

In other to compute the corresponding wave function, we

— A-2ar
define a variable of the form: S=€ " and substitute it into

Eq. (13) to have

d°F,(s), 1-s dFM(s){AsZ+Bs+c} ©

ds®  s(l-s) ds (s(1-9))°
(34)

Comparing Eq. (34) with equation of the form
dZFm(z)+ a,-a,z (FnK(z)+ AZ +Bz+C @

& (- & |(g-a,2)
(35)
the wave function is given by
Fo=NZ (1—@‘2P{ﬂn+ 2(5+c)% —1;2£+ala32],
(36)
where

_(l-a)+ (1_01)2_40

= 5 ,

lag_a \/(151 a] [A B ]
c==+2 +, || =+2-—2 —+—+C|,

2 2 2 2 2 ao, a,
a=0,=a0,=1
A= (M+E~C)[D+(M-E,)] _k(k+1G,

@ ax?
(37)
5 2(M+E, ~C,)[D,(0-1-(M - E,)]
a2
k(k+1)(ZC +Cl)
a*r? (38)
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_(M+E, —CS)[De(b—l)—(M -E,)]|
a
_k(k +1)(c +c +C)

The complete wave function is written as

F9=NS(1-9" R(-nn+2e+c) 26419,

(40)
3.2: The Pseudospin Symmetry Limit:
9x(r) _,
Under the pseudospin symmetry, dr ‘
2(r)=C. = constant [28] with A(r) s taking as the improved

Tietz diatomic potential (Y+(")-) Thus, we recast Eq. (7) in the
form:

dz kl(x-
{?—%wm(m —Em+cm)}em(r)
-(M-E, +C,)(M+E,)G,(r)=0. 1)

Substituting potential (1) and approximation (9) into Eq. (41),
we obtain the following:

d’G,, (r) _
dr?

Vps EP” |G s
=[VE (N -EF ]G, () -

where

k(k_zl)cl +ZDE(M - E’w +Cps)
Vi) =—"

& +q

kk=1C; _p e (M-E, +C,)

re

(ear " q)z )

£ :Lkr'zm) H(M+E,)-D](M-E, +C,),

(44)

The negative energy solution of Eq. (6) can directly be
obtained via the spin symmetry solution through the
mapping [28, 29, 30, 31]

Fnk(r) hnd Gnk(r)'Enk - _Enk’
UM ~ Ur(),-C, - Cuk = k=1 4

Following the previous procedures, the energy eigenvalue
equation for the pseudospin symmetry under the improved
Tietz diatomic potential is obtain as

HAE g (G|
i)

k(k-1)G,
_E;,rk+M2_By+ ( rz) =

e

(46)

S X T |
B, =bD,(2+b)(M -E, +C,,),
By =Cps(Enk -M )_ De(M ~ B +CPS)'

The corresponding wave function is
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GO=NZ(1-9" ,R(-nn+20+1) 27+ 19, (47)
3.3: Non-Relativistic Limit:

Here we obtain the non-relativistic limit of the energy
equation of the spin symmetry. To obtain this, we make the
2u

. . - L -E, M+E.-=—%,
following transformation Ban w e

CS - 0and K - 2 with these, Eq. (33) turns to

1 2
NG < s i s N
T u u| A

(48)

A= \/1+ 4(0-1C, , 8uDY’

azrez azhz !
_2ubD,(b+2)
Bl - azhz ’
_ (L +1)(C,-C)
B, = a’zrez .

4. Thermodynamic properties and the

improved Tietz potential

In other to calculate the thermodynamic properties of a
system within the improved Tietz diatomic potential model,
we first calculate the vibrational partition function of the
system. To begin, we first re-write the energy equation (48)
in the form:

D+ AHDCH

En,/: e AA’

2H (49)
where

1 2 2
A4a2h2 0 —2(5—2n)

2u Jo-n

| _MU+D(C,=C)) , 24D, 0+2)

a’? ah?
_ 2
S I N
ate ah and means the largest

integer inferior to 5 Now, the partition function of the
system is calculated by

s
2(p)=3 e, 5oL
n=0 o KT (50)

Substituting Eq. (49) into Eg. (50), we have

0 -(5-2n)?
_ﬁ{De_I{(Hl)JZhZ] 5 e
zp=e ' * A=
=0

A
] \/ﬁ
i
no

n

(51)
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In the classical limit at high temperature T, for large o and
_ p[Degwﬂ)cohz

e i ]zl
small '8, the sum can be replace by
the integral to have the partition function as

5 nyErfi [é\/ﬁj
2(p)=A[edz=— Y

(52)

7 -Y(s-2n)?
B B =T
—zn

Having obtained the partition function in Eq. (52), it becomes
less cumbersome to calculate the thermodynamic properties.

I: The Vibrational Mean Energy U:

__0 Y P S
VA= o3 n2(A) B [1 DawsonF(r)}
_ | e _JmErfi@)
TJnEdfi@)| B 28r | T=t1® =
(53)

JB.

o
y

II: The Vibrational Specific Heat C:

c(B) =a%uw) =kg' U

"’ +J7m(L-12)Erfi
PRECEL S 2L

2 26" DawsonF (7)?

(54)
When AU 1 C(B)=0.

IIl: The Vibrational Mean Free Energy F:

~ 1 ﬁryErfi(r)]

F(B) = —kTInZ(B) = -=In| YL—=L |,

B nZ(p) F; n[ N
(55)

\R The Vibrational Entropy S:

S(B) =kInZ(B) + kT% InZ(B)

=S(B) =KInZ(B) - kﬁ% InZ(5) =

bt (3]
2 DawsonF (9) 2

yErfi(7)

1

%k 2log
VB

(66)

5. Results and Discussion
In Tables 1 and 2, we numerically reported energy eigenvalue
of the Improved Tietz potential for four different values of

g(g =2, 3, 4 and5) for ¢ =0and f =1 respectively. It is

seen that the energy for ¢ =0in Table 1 are higher than
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their counterpart for £ =1 in Table 2. The energy increases
as O and N increase for both En and Em. By putting
q-= 0,—1and 1, our potential (1) turns to Morse, Deng-

. . — Aar,
Fan and Rosen-Morse potentials respectively as b=¢ °,

b=e" —1and b=€"" +1 for the Morse, Deng-Fan
and Rosen-Morse potentials. In Table 3, we present the

numerical results for the energy eigenvalues of the Morse,
Deng-Fan and Rosen-Morse potentials. It is seen from Table 3
that as @ increases, the energy decreases in all the states.

Table 1: Energy spectral g of the Improved Tietz diatomic potential

with g =0.25 D=5and r, = 10 for three (3) different values of g.

n g=2 g=3 g=4
0 4.6604906 4.6606105 4.6607156
1 4.7133853 4.7132757 4.7131796
2 4.7615313 4.7612507 4.7610044
3 4.8050113 4.8046116 4.8042603
4 4.8439059 4.8434326 4.8430163
5 4.8782932 4.8777861 4.8773395
6 4.9082494 4.9077426 4.9072956
7 4.9338487 4.9333708 4.9329487
8 4.9551633 4.9547377 4.9543612
9 4.9722633 4.9719087 4.9715943
10 4,9852172 4.9849475 4.9847077

Table 2: Energy spectra_i’ of the Improved Tietz diatomic potential

with ¢ =0.25 p=sand; =1q for four (4) different values of,

n g=2 g=3 g=4
0 4.6548085 4.6557587 4.6573358
1 4.7076234 4.7083489 4.7097291
2 | 47556916 | 4.7562508 | 4.7574849
3 | 47990958 | 4.7995405 | 4.8006736
4 | 48379164 | 4.8382921 | 4.8393640
5 | 48722315 | 48725777 | 4.8736231
6 | 49021173 | 4.9024678 | 4.9035165
7 | 49276476 | 49280311 | 4.9291082
8 4.9488947 4.9493344 4.9504606
9 4.9659285 4.9664430 49676347
10 4.9788175 4.9794205 4.9806901

Table 3: Energy spectrd:l_:n/ of the Morse, Deng-Fan and Rosen-

Morse diatomic potentials wittD =1and, -1

state a Morse Deng-Fan Rosen Morse
@29 | (a=-1) | (a=1
2p 0.10 0.98921 0.97203 1.00918
0.15 0.96829 0.96498 0.97222
0.20 0.94657 0.94581 0.94748
3p 0.10 0.99111 0.97416 1.01097
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0.15 0.97405 0.97101 0.97781
0.20 0.95928 0.95874 0.96003
3d 0.10 0.98958 0.98625 1.04934
0.15 0.95587 0.93823 0.96744
0.20 0.93303 0.93100 0.93558
4p 0.10 0.99278 0.98596 1.01256
0.15 0.97894 0.97605 0.98260
0.20 0.96974 0.96930 0.97041
4d 0.10 0.99142 0.96018 1.05112
0.15 0.96148 0.95207 0.97293
0.20 0.94548 0.94363 0.94790
4f 0.10 0.99003 0.98722 1.10949
0.15 0.93711 0.91798 0.96017
0.20 0.91260 0.90865 0.91760

6. Conclusion

In In this work, we obtained the energy eigenvalues and
the corresponding wave functions for the Improved Tietz
diatomic potential model using a suitable approximation type
via supersymmetric approach. We have also obtained the
solutions of other potential model which are closely related
to the Improved Tietz potential by changing the numerical
value of g. The rotational vibrational partition function and
the thermodynamic properties were equally obtained. Our

results find applications in different areas of physics.
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