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ABSTRACT 

Using the supersymmetric quantum mechanics (SUSY) approach, we obtained analytical approximate solutions to the Dirac equation 

with an improved Tietz diatomic potential function under spin and pseudospin symmetries. The energy eigenvalues equation and the 

corresponding wave spinor for the two symmetries have been explicitly obtained. The non-relativistic limit of the spin symmetry has 

been obtained. The solution of Morse, Deng-Fan, and Rosen-Morse were obtained by changing the numerical value of q We have 

also obtained the thermodynamic properties of a system under the improved Tietz potential function. 
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1. INTRODUCTION 
Solving Relativistic symmetries of the Dirac Hamiltonian had 

been discovered many years ago. These symmetries however, 

in the recent time have been recognized empirically in 

nuclear and hardronic spectroscopies[1]. The analy9cal 

solutions of the relativistic Dirac equation plays a crucial role 

in quantum mechanics because, they contain all the 

necessary information required to understand the quantum 

behaviour of the Dirac particles which describe a relativistic 

particle with -1/2 [2]. Many authors have inves9gated the 

Dirac equation under spin and pseudospin symmetries in the 

presence or absence of coulomb tensor interaction for most 

of the physical potential models such as Manning-Rosen 

poten9al [3, 4], Ekart poten9al [5], Morse poten9al [6], 

Pseudoharmonic poten9al [7, 8],   

Coulomb poten9al [9, 10], double ring-shaped Kratzer and 

Oscillator poten9als [11], Yukawa poten9al [12], Hulthẻn 

poten9al [13], Tietz poten9al [14], Hyperbolic poten9al [15] 

etc. The concept of pseudospin symmetry was first 

introduced by Hecht and Adler in 1969. The pseudospin 

symmetry was considered in the context of deformation, 

superdeforma9on [16], magne9c moment interpretation, 

iden9cal band [17] and effec9ve shell-model coupling 

scheme [18]. The pseudospin symmetry limit occurs when 

( ) ( ) ( )r rV rS∑ = + =  constant [19, 20]. However, the spin 

symmetry is relevant to mesons [19]. Spin symmetry limit 

occurs when ( ) ( ) )(r rV rS∆ = − =  constant [19, 20]. Despite 

the effort of various authors in both relativistic and non-

relativistic wave equations, there is no report on the 

improved Tietz potential with thermodynamic properties yet.  

    Motivated by the interest in the interaction of fermionic 

particle within the thermodynamic properties under a system 

in the field of diatomic potentials, we attempt to study the k 

state  

solutions for the fermionic massive spin -1/2 par9cles 

interacting with the improved Tietz  

diatomic potential function. The improved Tietz diatomic 

poten9al func9on is given as [21, 22] 

2
e

( ) 1 .
e

e

I

r

rT e q
D

q
U r

α

α

 +− + 
=

                                      (1) 

This potential is related to other diatomic potential models 

such as the Morse potential (put
0q =

) and Deng-Fan 

potential (put
1q = −

). In the next section, we briefly 
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discuss Dirac equa9on. In sec9on 3 and 4, we present bound 

states solutions and thermodynamic properties of a particle 

under improved Tietz poten9al respec9vely. In sec9on 5 and 

6, we discuss results and concluding remark. 

2. Dirac Equation  
The Dirac equation for fermionic massive spin -1/2 par9cle 

moving in an attractive scalar potential ( )S r  and repulsive 

vector potential ( )V r in a spherical coordinate, is given by [1, 

4, 23] 

( )( ) ( )( ) ( ). 0,p M S r E V r rα β ψ + + − − = 
r r r

                                  (2) 

where  p i= − ∇
rr

 is the momentum operator,  denote the 

relativistic energy of the system,  and β are 4 4×  usual 

Dirac matrices [1]. For a par9cle in a spherical field [4], the 

total angular momentum operator 
j

 and the spin-orbit 

matrix operator 
( ). 1 ,k Lσ= +

 where σ  and L  are the Pauli 

matrix and orbital angular momentum respectively, commute 

with the Dirac Hamiltonian. The eigenvalues of k  are 

( )1/ 2k j= − +
 for the aligned spin 

( )1/2 3/2, ,s p etc
and 

( )1/ 2k j= +
 for the unaligned spin 

( )1/2 3/2, ,p d etc
. The 

complete set of conservative quantities can be chosen as 

( )2, , , zJH JK
[4]. The Dirac spinor is  

( )
( , )( )

( )
( ) ( )

( , )

,

lnk
jm

nk
nk

lnk nk
jm

r
r rr
r r

r

F
Yf

g G
Y

θ ϑ

θ ϑ
ψ

 
  

=   
 



=


 
        (3) 

where 
( )nkF r

 and ( )nkG r  are the radial wave functions of the 

upper and lower components respectively with 
( , )l

jmY θ ϑ
 and 

( , )l
jmY θ ϑ

 for spin and pseudospin spherical harmonics coupled 

to the angular momentum on the z −  axis [1]. Now 

subs9tute Eq. (3) into Eq. (2), we recast the following 

differential equations 

( )
2

2 2
( ) ( ) ( ) ( ),n n nr M V r

d
F S r rE G

dr r κ κ κ
κ 

+ 


= + − +
       (4) 

( )
2

2 2
( ) ( ) ( ) ( ),n n nr M V r

d
G S r rE F

dr r κ κ κ
κ 

− 


= − + +
       (5) 

which later give  

         

( ) ( )( ) ( )( ) ( )
2

2 2

1
∆n n n

d
M E r M E r F r

dr r κ κ κ
κ κ+ 

− − + − − + 
 

∑
     

( )

( ) ( )
∆

0
∆

n
n

d r
ddr F r

M E r dr r κ
κ

κ
 
   + + =  + −   
             (6)     

for  
( ) ( )1 1 ,κ κ + = +l l

  (0, )r ∞ ٍ◌ ,  

         

( ) ( )( ) ( )( ) ( )
2

2 2

1
∆n n n

d
M E r M E r G r

dr r κ κ κ
κ κ− 

− − + − − + 
 

∑
      

( )

( ) ( ) 0n
n

d r
ddr G r

M E r dr r κ
κ

κ
 
   − − =  − +   
  

∑

∑
         (7) 

for  
( )

ˇ

1 1 ,κ κ  − = + 
 

l l%

  (0, )r ∞ ٍ◌ . It is noted that 

( ) ( ) ( )r V r S r∆ = −
 and ( ) ( ) ( ).r V r S r∑ = + . 

3. Bound State Solutions 
In this section, we obtained the energy eigenvalues and wave 

functions for both the spin and pseudospin symmetries. 

3.1: The Spin Symmetry Limit: 

Under the spin symmetry, 

( )
0,

d r

dr

∆
=

 ( ) sr C∆ = = constant [24, 

25] with ( )r∑  as the Improved Tietz diatomic potential 

( ( ).ITU r ) Thus, we recast Eq. (6) in the form: 

      

( ) ( )
2

2 2

1
( ) ( )nIT s n

d
U M E C F

dr r
r rκ κ

κ κ + 
− − + − 

        

( )( ){ } ( ) 0.n s n nM E C M E F rκ κ κ+ + − − =
   (8) 

Eq. (8) can be solved analy9cally only for s-wave case due to 

the spin-orbit coupling term 
2

( 1
.

)k

r

k +
 Therefore, we shall 

employ a suitable approxima9on scheme [22, 24] to the spin-

orbit coupling term. For a short-range potential, the following 

formula: 

                                           
( )

2
2 22

1
0

1
,

1
r r

e

C C
C

r q qr e e
α α

 
 ≈ +

 + 

+ 
+

                
(9) 

is a good approximation to 
2

1
.

r  This approximation was used 

to study arbitrary l - state pseudo-Hulthẻn wave functions 

[22]. The parameters in Eq. (9) are obtain as follows: 

22

0 22

3(1 2 )
1

e er r
e

e

r q
C

e q

r

eα α

α
α − −− + += +

             
22

22

2
,

e er r
e e

e

q r r

r

e q eα αα α
α

− −− +

                                     (10) 

22

2

3

1 2

6( 3 3 )e e er r r
e

e

e q e eq r
C

r

qq α α α

α
α − −− − − −=

                          
23

2 2

2 (2 )e er r
e

e

e q er

r

α α

α
α −+ −

                                            (11) 

2

2 22 4

2 2

6 (3 2 2 ) 3( 13 )e e e er r r r

e

e q e eq q
C

r

q eα α α α

α

− −+ + + +=
  

2 22

22

4

.
2 ( )e e e er r r r

e e e

e

q e e q e eq r r r

r

α α α αα α α
α

− −+ − + +

                                                                                                       
(12) 

Subs9tu9ng poten9al (1) and approxima9on (9) into Eq. (8), 

we obtain the following: 
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2

2

( )
( ) ( ),s s

eff
n

n nk

r
V r

d F
F

dr
E rκ

κ =  −
                    (13)  

where we have used the following for simplicity 

( )1
2

( )

2
( 1)

( )
e s

e
eff rs

n

C
bD M

k

V

k

r
C

q

E

r
e

κ

α

−+ −
=

+

+

                        

( )

( )

22
2

2

(

,

1)
e

r

s
e

n

k k C
D b M E

e

r

q

Cκ

α

+

+
+

+ + −

             (14) 

              
( ) ( )s

nk en n sM E DE M E Cκ κ− = −  +− +
     

0
2

( 1)
,

e

k Ck

r

++ .er qb eα +=
                                      (15) 

In other to obtain the solu9on of Eq. (13), we use the 

essential concept of the supersymmetric quantum mechanics 

and shape invariance formalism [4,25,26] which enable us to 

write the ground-state wave function for the upper 

component as 

( ) ( )( )0 ,k r expF drQ r= −∫                                    (16) 

where ( )Q r
 is called the superpotential function in 

supersymmetric quantum mechanics  and shape invariance 

approach. Inser9ng Eq. (16) into Eq. (13) results to the 

following equation 

' ( )2 1( ) ( ) ( ) .s
eff nkQr EQ rVr− = −

                             (17) 

Since it is required that the superpotential function should be 

made compatible with the right-hand side of the nonlinear 

Ricca9 equa9on (17), we now propose a superpoten9al 

function 
( )Q r

 of the form: 

   
( ) 0 .

r
r

e
Q

qα
ββ −

+
=

                                                (18)  

where β  and 0β
 are two parametric constants to be 

determine later. In view of the superpotential of 

equa9on(18), we can now construct the two partner 

potentials (r)V±  as follows 

 

2 2( ) ( )
( )dQ r

U r Q r
dr

β+ = + = −
             

( ) ( )
( )

2
0

2

0 00
12

,
r r

r r

e e

e q e q

α α

α α

β β α βββ + + −
+ +

+

       (19) 

2 2( ) ( )
( )dQ r

U r Q r
dr

β− = − = −
                      

( ) ( )
( )

2
0

2

0 00
12

.
r r

r r

e e

e q e q

α α

α α

β β α βββ − + −
+ +

+

       (20) 

Now, comparing Eq. (17) with Eq. (13), we deduce the values 

of the two parametric constants and establish the 

relationship between the constants and other variables:   

for constants :   

 

(2 1) ,s
nkEβ = −

                                                                    (21) 

( ) 1
0 2

2
( 1)

2 ,e nk s
e

C
D E C

k k
b M

r
ββ += + − −

          (22) 

( )2 22
0 0 2

( 1)
,e nk s

e

k k C
D b EM C

r
ββ += + − +

        (23)  

0 0.αβ =
                                                                             (24) 

In other to obtain the value of each of these parameters and 

establish the relationship between them as stated before, it 

is interested to note that the interest of the author lies only 

in the bound state solutions which demand that the radial 

part of the wave function nkF
 must satisfy the boundary 

conditions 

 

0,
.

(

0

)

,
nk

r

rF r

r

→ ∞
= ∞ →                                                   (25) 

Considering the regularity conditions and their consequences 

(i.e. 0 00,β β> >
) and the simplifica9on of equa9ons (21), 

(22), (23) and (24), the value of 
β

 and 0β
are obtain as 

( )0 22
22

2

4
1 1

2
) ,( 1 e e nk s

e

r Mk k C Db E
r

C
αβ

α
 

 = ± + + + −  
 

+
 

                                                                                                  (26) 

( )( ) ( ) 22 1
02

0

1
(2

.

)

2

e nk s
e

k k
b

C C
b C

r
D EM

β
β

β
+ −

+ + − −+
=

 

                                                                                                  (27) 

From the two partner potentials, we can obtain the following 

relationship 

0 1 1( , ) ( , ) ( ),U r a U r a R a+ −= +
                              (28) 

where  1a
 is a new set of parameter uniquely determine from 

an old set of parameter 0a
 and 0a  is a function of 1a

, i.e. 

1 0 0( )a f a a α= = −
. The residual term 1( )R a

 is independent 

of the variable .r  However, Eq. (28) shows that the partner 

potentials are shape invariant. By using the shape invariant 

approach [27], we can determine exactly, the energy 

eigenvalues equation of the shape invariant potential 
( )U r−  

after obtaining the following relationship 

( ) ( ) ( )2 2
2 2 2 2

0 0 0 0 1 1

1
0 1

,
2 2

2 2
R

a a a

a

a
a

a

ββ ββ   + − + −
   −
      

=
    (29)                                                                                     

( ) ( ) ( )2 2
2 2 2 2

0 1 1 0 2 2

2
1 2

,
2 2

2 2
R

a a a

a

a
a

a

ββ ββ   + − + −
   −
      

=
      (30) 

( ) ( ) ( )2 2
2 2 2 2

0 1 1 0

1

.
2

2

2

2
n n n n

n
n n

R a
a

a a a a

a

ββ ββ− −

−

   + − + −
   −
      

=
            (31) 

Following the formalism of shape invariance approach, the 

energy levels of the system can be determine as  
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( )( )
0 0

1

n
s s s s
nk nk k i k

i

E aE ERE −

=

= + = +∑
                                   

( ) 2
2 2

0
.

2

2 n n

n

a a

a

ββ + −
 =
                                              (32) 

This gives energy equation for the spin symmetry as   

( ) 02 2
, 2

1s
s nk

e

k k C
E M A

rγ
+

− + + + =
 

( )( ) [ ]
( )

22
2 1

2

1
1 2

2

1 2
e

k k C C
nA A

r

n A

β α

α

α

α

  + −  
  

 


+ −
−



−



−


−

                   (33a) 

 

( )2
22

2
2

(
4

1 1 ,) e e nk s
e

A k k C D r Mb E
r

Cα α
 = + + − + + 

          (33b) 

 
( ) ( )2 ,e nk sA D Mb E Cbβ + + −=

                   (33c) 

 
( ) ( ).s nk e nk sA C E M D M E Cγ = − + + −

      (33d) 

In other to compute the corresponding wave function, we 

define a variable of the form: 
2 rs e α−=  and substitute it into 

Eq. (13) to have  

( )
2 2

22

(s) (s)1
(s).

(1 ) (1 )
n n

n

d F dFs BsAs
F

ds ds s

C

s s s
κ κ

κ

 
+ +  

−  

− + +
−

    

                                                                                                  (34) 

Comparing Eq. (34) with equa9on of the form 

( )
2

2 2

2
1

3
2

3

(z) (z)
(z),

(1 z )zz1) (
n n

n

d F dF Az
F

dz dz

z Bz C

s
κ κ

κ
α α

α α

 
+ + 

−  

− + +
−

                                                                                                       
(35) 

the wave function is given by 

( ) 2
3 2 1 1 3

3

1(z) 1 , 2( ) ,2 ,;nF Nz z P nn z
ςε αα εε ς α α

α
 

= − − + + +


−+ 
                                                                                                        

(36) 

where  

  

( )1

2

1(1 ) 1 4

2
,

Cα α
ε

− + − −
=

 

1 2 1 2

3 3

2

3 3 3

1 1

2 2 2 2 2
,

2

A B
C

α α α ας
α α αα α

   
= −+ − +   

  
+ +


− +

 

 1 2 3 1α α α= = =
, 

( )[ ] 0
2 2 2

( ) ( 1)
,nk s e nk

e

M E C D M E k k C
A

rα α
+ − + − += −

 

                                                                                                  (37) 

( )[ ]
2

2 ( 1) ( )nk s e nkM E C D b M E
B

α
+ − − − −

=
                               

0 1
2 2

,
( 1)(2 )

e

k k C C

rα
+ +−

                                                (38) 

( )[ ]
2

( 1) ( )nk s e nkM E C D b M E
C

α
+ − − − −

=
                                

0 1 2
2 2

( 1)( )
.

e

k k C C C

rα
+ + +−

                                         (39) 

    The complete wave function is written as 

( ) ( )2 1( ) 1 , 2( ) 1, ,;2nF s N s s P n n s
ες εε ς= − − + + +

   (40) 

3.2: The Pseudospin Symmetry Limit: 

Under the pseudospin symmetry, 

( )
0,

d r

dr

∑
=

 

( ) sr C∑ = =
constant [28] with ( )r∆  is taking as the improved 

Tietz diatomic potential ( ( ).sU r ) Thus, we recast Eq. (7) in the 

form: 

    

( ) ( ) ( )
2

2 2
( )

1
nIT ps n

d
U M E C G r

r
r

d r κ κ
κ κ − 

− + 
 

+−
           

( )( ) ( ) 0.psn n nM E C M E G rκ κ κ− − + =+
    (41) 

Subs9tu9ng poten9al (1) and approxima9on (9) into Eq. (41), 

we obtain the following: 

2

2

( )
( ) ( ),ps ps

eff nk
n

n

r
V r

d G
G

dr
E rκ

κ =  −
        (42) 

where 

( )1
2

( 1)

( )

2 e ps
ps e

ef rf

n

k k
r

C
bD M E

V r
q

C

e

κ

α

+ +−−

=
+                  

( )
( )

22
2

2

( 1)

,
n

r

e ps
e

C
D b M

k k
E

r
C

e q

κ

α

− −− +
+

+
          (43) 

( ) ( )0
2

( 1)
,ps

nk e psn n
e

k k
E

r

C
M E D M E Cκ κ+ −−− = + +   −

 

                                                                                                  (44) 

The nega9ve energy solu9on of Eq. (6) can directly be 

obtained via the spin symmetry solution through the 

mapping [28, 29, 30, 31]   

 
( ) ( ), ,nk nk nk nkF r G r E E↔ → −

                          
( ) ( ), , 1,IT IT s psU r U r C C k k→ − − → → −

         (45) 

Following the previous procedures, the energy eigenvalue 

equation for the pseudospin symmetry under the improved 

Tietz diatomic potential is obtain as        

( ) 02 2
, 2

1
ps nk

e

k k C
E M B

rγ
−

− + − + =
  

( )( ) [ ]
( )

22
2 1

2

1
1 2

2
.

1 2
e

k k C C
B n B

r

n B

β α

α

α

α

  + −  
  

 
 
 

− −
− −

− −

                 
(46) 

( )2
22

2
2

(
4

1 1 ,) e e nk ps
e

k k C DB r
r

E CMbα α
 = + − − + −

( ) ( )2 ,e nk psB D M E Cb bβ = + − +
 

( ) ( ).ps nk e nk psB C E M D M E Cγ = − − − +
 

The corresponding wave function is 
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( ) ( )2 1G( ) 1 , 2( ) 1; , ,2ns N s s P n n s
λη ηη λ= − − + + +

     (47)     

3.3: Non-Relativistic Limit: 

Here we obtain the non-relativistic limit of the energy 

equation of the spin symmetry. To obtain this, we make the 

following transformation , ,s nk nM E E− → −
l  

, k 2
,

2
s nM E

µ→+ =
h  

0sC =
and 

,k → l
 with these, Eq. (33) turns to  

( )
2

2
2 2 2 2 1 1

0
,

1

1
( 1) 4

1 2
.

2 2 1 2n e

B B n AC
E D

n A

α
µ µ

 + − − 
 − − 


−+= + −



l

ll h h

 (48) 

2
2

1 2 2 2 2

84 ( 1)
,1 e

e

DC b

r
A

µ
α α

−= + +l l

h
 

1 2 2

2 2)
,

(eb bD
B

µ
α

+=
h  

2 1
2 2 2

( 1
.

)( )

e

C C
B

rα
+ −= l l

 

4. Thermodynamic properties and the 

improved Tietz potential 
In other to calculate the thermodynamic properties of a 

system within the improved Tietz diatomic potential model, 

we first calculate the vibrational partition function of the 

system. To begin, we first re-write the energy equa9on (48) 

in the form: 
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 and 

[ ]δ
means the largest 

integer inferior to δ . Now, the partition function of the 

system is calculated by 

0
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Substituting Eq. (49) into Eq. (50), we have  
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In the classical limit at high temperature T, for large δ  and 

small β , 
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 the sum can be replace by 

the integral to have the partition function as 
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Having obtained the par99on func9on in Eq. (52), it becomes 

less cumbersome to calculate the thermodynamic properties. 

I: The Vibrational Mean Energy U: 
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II: The Vibrational Specific Heat C: 
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When 1,β �  ( ) 0.C β =  

III: The Vibrational Mean Free Energy F: 
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IV: The Vibrational Entropy S:  
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5. Results and Discussion 
In Tables 1 and 2, we numerically reported energy eigenvalue 

of the Improved Tietz potential for four different values of 

q ( q = 2, 3, 4 and5) for 0=l and 1=l  respectively. It is 

seen that the energy for 0=l in Table 1 are higher than 
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their counterpart for 1=l  in Table 2. The energy increases 

as q and n  increase for both nE  and nE
l

. By putting 

0, 1q = −  and 1,  our poten9al (1) turns to Morse, Deng-

Fan and Rosen-Morse potentials respectively as ,erb eα=  

1erb eα= −  and 1erb eα= +  for the Morse, Deng-Fan 

and Rosen-Morse poten9als. In Table 3, we present the  

numerical results for the energy eigenvalues of the Morse, 

Deng-Fan and Rosen-Morse poten9als. It is seen from Table 3 

that as α  increases, the energy decreases in all the states. 

Table 1: Energy spectral 
nE  of the Improved Tietz diatomic potential 

with 0.25,α =  5D = and 10er =  for three (3) different values of .q  

  n        2q =        3q =       4q =  

  0 

  1 

  2 

  3 

  4 

  5 

  6 

  7 

  8 

  9 

 10 

4.6604906 

4.7133853 

4.7615313 

4.8050113 

4.8439059 

4.8782932 

4.9082494 

4.9338487 

4.9551633 

4.9722633 

4.9852172 

4.6606105 

4.7132757 

4.7612507 

4.8046116 

4.8434326 

4.8777861 

4.9077426 

4.9333708 

4.9547377 

4.9719087 

4.9849475 

4.6607156 

4.7131796 

4.7610044 

4.8042603 

4.8430163 

4.8773395 

4.9072956 

4.9329487 

4.9543612 

4.9715943 

4.9847077 

 

Table 2: Energy spectral 
nE
l

 of the Improved Tietz diatomic potential 

with 0.25,α =  5D = and 10er =  for four (4) different values of .q  

  n        2q =        3q =       4q =  

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 

4.6548085 
4.7076234 
4.7556916 
4.7990958 
4.8379164 
4.8722315 
4.9021173 
4.9276476 
4.9488947 
4.9659285 
4.9788175 

4.6557587 
4.7083489 
4.7562508 
4.7995405 
4.8382921 
4.8725777 
4.9024678 
4.9280311 
4.9493344 
4.9664430 
4.9794205 

4.6573358 
4.7097291 
4.7574849 
4.8006736 
4.8393640 
4.8736231 
4.9035165 
4.9291082 
4.9504606 
4.9676347 
4.9806901  

 

Table 3: Energy spectral nE
l

 of the Morse, Deng-Fan and Rosen-

Morse diatomic potentials with  1D = and 10er =  

state    α     Morse  

 ( 0)q =  

Deng-Fan 

( )1q = −  

Rosen Morse 

 ( )1q =  

 2p 0.10 

0.15 

0.20 

0.98921 

0.96829 

0.94657 

0.97203 

0.96498 

0.94581 

1.00918 

0.97222 

0.94748 

3p 0.10 0.99111 0.97416 1.01097 

0.15 

0.20 

0.97405 

0.95928 

0.97101 

0.95874 

0.97781 

0.96003 

3d 0.10 

0.15 

0.20 

0.98958 

0.95587 

0.93303 

0.98625 

0.93823 

0.93100 

1.04934 

0.96744 

0.93558 

4p 0.10 

0.15 

0.20 

0.99278 

0.97894 

0.96974 

0.98596 

0.97605 

0.96930 

1.01256 

0.98260 

0.97041 

4d 0.10 

0.15 

0.20 

0.99142 

0.96148 

0.94548 

0.96018 

0.95207 

0.94363 

1.05112 

0.97293 

0.94790 

4f 0.10 

0.15 

0.20 

0.99003 

0.93711 

0.91260 

0.98722 

0.91798 

0.90865 

1.10949 

0.96017 

0.91760 

 

6. Conclusion 
In In this work, we obtained the energy eigenvalues and 

the corresponding wave functions for the Improved Tietz 

diatomic potential model using a suitable approximation type 

via supersymmetric approach. We have also obtained the 

solutions of other potential model which are closely related 

to the Improved Tietz potential by changing the numerical 

value of q. The rotational vibrational partition function and 

the thermodynamic properties were equally obtained. Our 

results find applications in different areas of physics. 
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