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An Approximate Solution of Dirac Equation for Secand Poschl-Teller like Scalar and
Vector Potentials with a Coulomb Tensor Interaction

C. A. Onatg, K. J. Oyewumi and B. J. Falaye
Theoretical Physics Section, Department of Physics, University of llorin, Ilorin, Nigeria

Using the formalism of supersymmetric quantum maidsa(SUSYQM), we report approximate analyticalusiohs of
relativistic symmetries of the Dirac equation ie firesence of a second Pdschl-Teller like scakhwantor potentials. It has
been shown from numerical results obtained thatd#generacy between spin and pseudo-spin doulaletbe removed by
tensor interaction, which is consistent with ouegant knowledge of the subject.

1. Introduction

In recent years [1-10], the problem of exact
solutions of the Dirac equation for a number of
special potentials has been a line of great interes
Several authors, by using different methods, have
investigated the solution of the Dirac equatiorhwit
spin and pseudospin symmetry and a tensor
Coulomb interaction. These investigations include
the Tietz potential [11] Poschl-Teller and
hyperbolical potential [12], pseudo-harmonic
potential [13], Yukawa potential [14], Manning-
Rosen potential [15,16], Deng-Fan potential

[17] and Rosen-Morse potential [18]. The methods

include the Nikiforov-Uvarov method [1,8,11], the
asymptotic  iteration  method [3,6] and
supersymmetry of guantum mechanics
[2,7,11,12,17].

Up till now, to our knowledge, no work on the
second Podschl-Teller potential [19,20] exists.slt i
therefore, the priority purpose of the present work
is to give approximate analytic solutions of the
Dirac equation for this potential and a coulomb
tensor interaction by super-symmetry approach.

The concept of super-symmetry was discovered
in 1971 and was first investigated in High Energy
Physics is an attempt to obtain a unified desanpti
of all basic interactions (fundamental forces) in
nature. It offers a possible way to understand the
space-time internal symmetries of the S-matrix. In
this approach, the solutions of relativistic or non
relativistic equations for a given potential is
brought into a well-known form of Schrddinger-
like equation possessing known solutions via the
methodology of the supersymmetry. Then, by using
the idea of shape invariance, the exact solution ca
be obtained.
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The scheme of our presentation is as follows. In
Sec. 2, we provide the readers with a quite compact
introduction to the SUSYQM. In Sec. 3, we review
the spin and pseudospin symmetry limits of the
Dirac equation. Thereafter, using a suitable
approximation, we bring the problem into a rather
more familiar form from which we obtain an
approximate analytical solution of the problem. In
the last section, some remarks and numerical
results are given.

2.  Supersymmetry

In this section we discuss the super-symmetry
method in a simpler form. The partner Hamiltonian
[21] is given as

H. =p—2+V¢ (x) 1)
2m

Where
V. (X) = @2 (x) 2 ®'(x) 2)

For good SUSY(E, =0), the ground state of the
system is obtained via

% (x) =Ce™ ®)

Where, C is the normalization constant and the
super-potential is given as

U= j:o dzb(x) )

If the SUSY shape invariant condition

V. (8, %) =V_(a;,x) + R(a,) ()
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holds, then the partner Hamiltonians are the shape-
invariant. In Egn. (5)a, is a new set of parameters

determined from the old sei, via the mapping, F:
a, - & =F(a,) and R(a,;) does not includex.

In such a case, the problem is simplified to a high
degree and everything of interest is calculatedhfro
[21]

En=>..,R@) (6a)
@ (35,%) =Cexpl-[Gzb(a,, 2] (6b)
Where
A =2, 0 @
ox s

Thus, the shape invariant condition determines the
spectrum of the bound states of the Hamiltonian

2

H, =2 +V_(a, 0 +E, (®)
0X

S

Where the energy eigen-functions of

H. (@, X =Eg.@,x), nzs (9)

are related by [22,23]

+

wn_—s (as! X) = 1 wn_—(s+1) (as+1! X) (10)

(E,-E.)?

3. Dirac Equation Including a Tensor
Coupling

The Dirac equation with tensor is given by [24,25]
[aDp+B(M +S(r))—iBa TU(r)]¥(r)

=[E-V(r)]¥(r) (11)
Where, V(r), S(r) and U(r) are vector, scalar
and tensor potentials, respectively. Alsg,M and

p denote the relativistic energy, Fermion mass and
momentum operator, respectivelyg and S
matrices are given as

130

12)

oo} oo 5

Where, | is 2x2 unitary matrix and the spin
matrices are

o) of 70 o) o S

(13)

The total angular momentum operatqr, and the
spin-orbit coupling operatok = ([ +1) with L
being the orbital angular momentum of spherical

nucleons, commute with the Dirac Hamiltonian.
The eigenvalues of spin-orbit coupling operator

k=[j+%j>0 and k=—[j+%j<0, for the

unaligned spinjz!@—% and the aligned spin

j =€—%, respectively. The setH ?,K,J?,J,) is

taken as the complete set of the conservative
guantities. Therefore, we can write the spinors as
[24,25]

(D) —F"kr(r) Y/ (6.9)
l-|Jnk (r)_(gnk(r)]_ IGnk(r) _ (14)
r

Y;. (6.9)

Where, f,, (r) and g, (r) are the upper and lower
components of the Dirac spinorS’.fm 6,¢) and

Yj/'m (8,9) respectively denote the spin and pseudo-

spin spherical harmonics andis the projection of
the angular momentum on the z-axis. By using the
following relations

(o [A)(0B) = AB+ig [[AxB) (15a)
(@ D) =&Eﬂ(f[b+iﬁTD:j (15b)

and relations
(@)Y, (6,9) = (k-1Y] (6,9) (16a)
(@)Y, (6.9) =—(k-D1)Y/ (6.9) (16b)
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(@)Y (6.4)=-Y] (6,9) (16¢)

(G, (6,4)=-Y, (6.9) (16d)

we have the following coupled differential
equations [24,25],

[%+$_U(r)j|:nk (N =(MM+E, +A())Gy (1)

(17a)

d? _K(K+D |
dr? r?

U(r) dL;(r)

(M+E, —AM))M = E, +2(r)F, (r)

d? _K(KHD |
dr? r?

du (r)

U()+

(M+E, —AMN)M —E, +2()Gy (1)

Where, k(k =1) = /(¢ +1) and k(k +1) = /(¢ +1).

3.1. The pseudo-spin symmetry limit

For pseudo-spin
d>(r)
dr

symmetry, we have

=0and X(r)=C =constant. Here, the

difference potential is taken as the second Podschl-

Teller potential, which is plotted as variation rof
for different values ofo and the tensor is taken as
the Coulomb-like potential, i.e.,

V, -V, coshgr)
sinh? (ar)

A(r) = (21)

-U2(r)+

—U%(r)+
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[%_%"LU (r)jGnk (1) =M = Ep + X (N)Fnc ()

(17b)
Where
2(r)=V(r)+S(r) (18a)
A(r) =V(r)=S(r) (18b)
From Eqgns. (17a) and (17b), we obtain
dA d
e P TO) | NOR
M +E, ~A(r)
(19)
d>(r) d « _
— ( WY (r)] Gy ()=
M - Enk +Z(r)
(20)
20 \
15 A ‘\\
10 \\\‘
5 \ \\
T, ‘ ~:L"'?-h.-.-. 2 e nr sfocaharachar el
> 2,; ’_..%- e ol " o 0
? // =ap==3 =002
-10 : == 3=0025
15 // - 3=-002
/ : — =3=005
20 /

a

Fig.1: The second Pdschl-Teller like potential.
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U(r)=—%, r=R, (22)
_Z,2,¢€
H= o, (23)

Where, R, is the Coulomb radiusZ, and Z,

denote the charges of the projection particlend
the target nucleush, respectively. Under this
symmetry, we obtain the coefficient of the inverse
square term by using Eqns. (21), (22) and (23) as

5, =k(k=1)+2kH —H +H? = (k+H)(k+H -1)
(24)

Substituting the approximation [12]
1 a’®
T2

2 sinh? (ar) (29)

into Eqn. (20) gives

d2
[dl’z —csch?(an)Vy(Ey ~M =C ) +a*d]

— coshgr )esch? (ar)V,[M —Ey +C..])
XGy =M+ Enk)(M = +Cps)Gnk (r) (26)

Where,k=-/ andk=/¢+1 for k<0 andk >0,
respectively.

3.2. The spin symmetry limit
dA(r) _
dr

For spin symmetry, and

A(r) =C, =constant  [24,25]. Under this

symmetry, we considered the sum potential as the
second Pdschl-Teller potential given by

_V, -V, coshgr)

(1) sinh?(ar)

(273a)

and consequently

0, =k(k+D)+2kH +H +H? = (k+H)(k+H +1)
(27b)

Substituting Eqgns. (27a) and (27b) into Eqn. (19)
yields
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2
[(;jr_z —csch?(an)[Vy (M +Ey —~Co) +a?3,]

— cosh@r Jesch?(ar )V, [C, -M —E,])
ank (r) = (M - Enk)(M + Enk _Cs)Fnk (r) (28)

Where,k=¢ andk =-¢-1 for k<0 and k>0,
respectively.

4.  Approximate Relativistic Bound-States of a
Particle in the Field of the Second Pdschl-Teller
like Field Plus Tensor Interaction

In this section, we present the approximate bound
state solutions of the Dirac equation with the
second Pdschl-Teller like potential in the presence
of a tensor potential, using the SUSYQM.

4.1. Pseudospin symmetry bound state
solutions

The Schrodinger-like equation we obtained in the
previous section under this symmetry can be
written as

d’G, (r ~
drz( ) = (VEff (r) - Eps,nk )Gnk (r) (29)
Where, we have introduced the following
parameters

V4 =V, csch?(ar) +V, cosh@r )csch? (ar)

(30a)

V, =a?, +V,(E ., ~M -C)) (31b)
Vp =V, (M = Epgric +Cp) (31¢)
Bk = (M + Epg i )(M = Epg oy +C,) (31d)

For mathematical simplicity, the super-potential
related to the ground state function is as follows

P, cosher)

AULA A sinh?(ar)

(32a)

Where
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ax\a?+4av,
P = (32b)
2
Y/
P, =——2 (33c)
2R,
With Eqgns. (32), we can obtain the partner
potential as

dr
V,(r,P,V,)=R>+—
(r,P,V,) .

- Vb2
=

1

+P? csch?(ar) + P? csch? (ar)

- 2P,P, coshgr )csch? (ar)
+csch(ar )[2csch? (ar) +1](P, +a)

- P? csch(ar )[2csch? +1] (33)
Similarly,

dr
V_(r,P.V,)=R*+—
P V) ™

- Vb2

—~+P7 csch?(ar) + P? csch* (ar)

1

- 2P,P, coshgr )csch? (ar)
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+ P, csch(ar )[2csch?(ar) +1](P, +a)
- P? csch(ar )[2csch?(ar) +1] (34)

From Eqns. (33) and (34) it can be deduced that

V+ (r7 Pl'Vb) :V— (r’ Pl _O',Va)'i' R(r' Pl _a’va)
(35)

Where

A B A

4P7 4P -a)’

R(r,R—aV,)= (36)

Hence, the shape invariance condition is satisfied
and then we can find

Eps,nk = ZE:l R(r, R, —ka,V,)

_ Vb2 _ Vb2
4P?  A(P,-na)’

E E Ve

=B +E_ =-——0 37
ps,nk ps,nk ps,0k 4(P1_n0')2 ( )

On substituting for the relations in the above
equation, we can easily find

VZ(M +Cp - Eps,nk)

(M +Eps,nk)(M _Eps,nk+cp) + =0
a@n+1)+Ja? +4a’ (k+H)(k+H 1) +V,(E oy —M —C,]
(38)
4.2. Exact solutions of spin symmetry limit V, =a?d,+V,(M +E_,, —-C,) (40Db)
In this symmetry limit, our Schrodinger-like
equation takes the following form, \7b =V,(C,-M -E, ) (40c)
d?F, () _ — ~ =
T"kz() = Vg (1) = Eq i )Fuc () (39) Ene =M —Eg, )M +Eg  +Cy) (40d)

With

We have decided to use the same variables so as to

avoid repetition of algebra. It is clear that E(BD)
is similar to Eqn. (29); therefore, substituting fo

E.x.Vo and P in Eqgn. (37), the relativistic
energy spectrum turns out as

V., =V, csch?(ar)+V, cosh@r )csch?(ar)
(40a)
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V,(C,~M ~E, )
(M B Esvnk)(M + Es,nk _Cs) + 2= Es,nk =0

a@-2n)+,/a® +4a*(k+H)(k+H +D) +V,(M +E, , ~C))]

(41)

The detailed behavior of the system and the
degeneracy removing role of the tensor term are
well observed in Tables 1 and 2. In addition the

variation of the relativistic energy spectrum as a
function of a is given in Figs. 2 and 3.

Table 1: The bound state energy eigenvaliies™) of the p-spin symmetry second Péschl-Teller likeeptial
for various values ofi and x with o = 004 M =1fm™,v, = 0001fm™,V, = 001fm™ and C , = -10fm™.

¢ n k (4f) Epork(H=00  Epn(H=05  E, . (H=)

1 1 1 4 -1.000080595  -1.000044248 -1.000020417
2 1 =2 pl -1.000168538  -1.000124395 -1.000080595
3 1 3 n’}. -1.000218865  -1.000203821 -1.000168538
4 1 4 A -1.000130820  -1.000199959  -1.000218865
1 2 1 0= -1.000051881  -1.000019746 -1.000003511
2 2 =2 ;a -1.000197359  -1.000107533  -1.000051881
3 2 -3 .:a -1.000537328  -1.000355054  -1.000197359
4 2 4 f -1.001217317  -1.000823875 -1.000537328
11 2 .:a -1.000080595  -1.000124395 -1.000168538
2 1 3 ﬁ) -1.000168538  -1.000203821 -1.000218865
3 1 4 P -1.000218865  -1.000199959  -1.000130820
4 1 5 HQ -1.000130820  -0.999992215  -0.999761434
1 2 2 d;l -1.000051881  -1.000107533  -1.000197359
2 2 3 fl -1.000197359  -1.000335054  -1.000537328
3 2 4 g -1.000537328  -1.000823875 -1.001217317
4 2 5 aa -1.001217317  -1.001743113  -1.002429432
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Table 2: The bound state energy eigenval(izs™) of the spin symmetry second Péschl-Teller likeepgal
for various values ofn and « with a=00LM =1fm™,V, = 0001fm™,V, = 001fm™,C, =10 and
C,= -10fm™.

W W W W N N N DN PR R P OWOwW W w NNy 22RO O O o
N PO W N PO W N P O W N P O W N P O W N P O W N +—» O

w

Wi B B e

w W OWw W NN NN R R e e
wied wnd e o by Ry

9.977252360
9.973243779
9.968072245
9.961238771
9.977813179
9.973958334
9.969002434
9.962481201
9.978603874
9.974961894
9.970302863
9.964208567

9.977501208
9.973561125
9.968485792
9.961791839
9.978182795
9.974428024
9.969611938
9.963292206
9.979069768
9.975551063
9.971063037
9.965213091

l n k (¢, f) Egw(H=0) E,w(H =05 Esw(H =1
-1 =L 9.976961054 9.976924109 9.976961054
-1 si. 9.972871721 9.972824491 9.972871721
-1 _-E?: 9.967586518 9.967524791 9.967586518
-1 5'53- 9.960587741 9.960504896 9.960587741
-2 ;@ 9.977252360 9.977071174 9.976961054
-2 ;ﬂ; 9.973243779 9.973012439 9.972871721
-2 72 9.968072245 9.967770339 9.967586518
-2 ;@ 9.961238771 9.960834301 9.960587741
-3 d} 9.977813179 9.977501208 9.977252360
-3 d}_; 9.973958334 9.973561125 9.973243779
-3 d; 9.969002434 9.968485792 9.968072245
-3 r;B 9.962481201 9.961791839 9.961238771
-4 ﬂ_} 9.978603874 9.978182795 9.978182795
-4 f.}. 9.974961894 9.974428024 9.973958334
-4 j;_’ 9.970302863 9.969611938 9.969002434
-4 _fi_% 9.964208567 9.963292206 9.962481201

9.977813179
9.973958334
9.969002434
9.962481201
9.978603874
9.974961894
9.970302863
9.964208567
9.979573594
9.976186394
9.971880028
9.966288367
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L ForH =0.5
9.975
1p, =0d; 1d; =0f; 1f, =09, 2p, =1d,,
997 2 2 2 2 2 2 2 2
E 9965
£ 2d, =1f, 2f, =1g,
7 2 2 2 2
c
a 9.955
ForH=1
995
- 1dg =0d; 1f, =0fg 2dg =1d; 2f =1fg
9 | ‘ ‘ ‘ 2 2 2 2 2 2 3 2
0 0.005 0.01 0.015 0.02
a
_ The degenerate states in the spin symmetry limit
Fig.2. for variousH, as shown in Table 2, are as follows:
-1014 ‘ ; : ) ForH=0
0.005 0.01 0.015 0.02
-1.016
1ote st Ops =0p, 1p; =1p; 2ps =2p, 3p; =3p,,
= -1.02 2 2 2 2 2 2 2 2
£ —-1P3/2
o102 —=0g7/2
% 1o 0d, =0d, 1d, =1d, .2d, =2d, 3d, =3d,,
uD.I'-l.UZG 2 2 2 2 2 2 2 2
-1.028
' 2 2 2 2 2 2 2 2
-1.032
a
ForH=0.5
Fio.3 0ds =0p, Mdg =1p, ,2d; =2p, 3d5 =3p,,
9-5. 2 2 2 2 2 2 2 2
5. Conclusion 0f, =0d, 1f, =1d, 2f, =2d, 3f, =3d,
By using the Pekeris approximation type, we have 2 2 2 2 2 2 2 2

obtained approximate analytical solutions of the

Dirac equation with Second Pdschl-Teller like ForH=1.0

potential under a tensor Coulomb interaction. We

found that the presence of tensor removes the 0s, =0p;]ls,=1p,;.2s, =2p;,3s, =3p,,

energy degeneracy in both the spin and pseudospin 2 2 2 2 2 2 2 2

symmetries. The energy degeneracyHor 0, 0.5

and 1.0 for some values nfand « is given below. sz = Op1 ,11‘Z :1p1 ,21‘Z = 2p1 ,31‘Z = 3p1
2 2 2 2 2 2 2 2

In the pseudospin symmetry, we have:
Our results find application in both Hadron and

ForH=0 nuclear physics.
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