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Abstract:
By using the Pekeris approximation type, the Schrödinger equation is solved for the interaction
of Coulomb and Hulthèn potentials within the framework of supersymmetric approach and
Nikiforov-Uvarov method. The energy levels are obtained with the corresponding wave functions
in terms of hypergeometric functions.
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1. INTRODUCTION

The experimental verifications of the Schrödinger equation that were theoretically discussed long ago,
have recently aroused interest in Physics. The two most important ingredients in many studies are the
wave functions and energy eigenvalues of the corresponding Schrödinger for which we do not know exact
solutions in many cases. However, in some instances, the solutions are known in terms of the familiar
mathematical functions [1]. The analytic solutions of the wave equations with some physical potentials
are only possible for `= 0. For ` 6= 0 state, the Pekeris approximation type [2–4] have been used to obtain
an approximate solutions. To obtain the bound state energy eigenvalues for any ` state, various methods
such as Asymptotic iteration method [5–9], Nikiforov-Uvarov method [10–14], exact quantization rule
[15, 16], shifted 1/N expansion method [17], supersymmetric method [18, 19] have been used.

In the present work, we attempt to investigate the bound state solutions of the radial Schrödinger
equation with the interaction of Coulomb potential and Hulthèn potential using both supersymmetric
and Nikiforov-Uvarov methods. Hulthèn potential is one of the important molecular potentials used in
different areas of Physics such as nuclear and particle, atomic and condensed matter Physics and chemical
Physics to describe the interaction between two atoms. As a result of its applications, several works
have been done on this potential. For instance, Agboola [20, 21] solved the Schrödinger equation with
Hulthèn plus ringed-shaped potential. Bayrak and Boztosun [5], applied the asymptotic iteraction method
to obtain a solution with Hulthèn potential. Saad [22] investigated the potential within the framework of
the Klein-Gordon equation in D-dimensional space. Haouat and Chetouani [23], solved the problem for
both Klein-Gordon and Dirac equation by an approximate technique. Ikhdair and Sever [24, 25] solved
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the Klein-Gordon equation with a position-dependent mass. Hall [26], in an instructive paper, discussed
the Yukawa and Hulthèn potentials together. Zarrinkamar et al. [27] obtained analytical treatment of the
two-body spinless Salpeter equation with the Hulthèn potential.

The organization of the work is as follows: In the next section, we obtain the bound state solutions. In
section 3, we obtain numerical results while in the final section, we give the concluding remark.

2. BOUND STATE SOLUTIONS USING SUPERSYMMETRIC APPROACH

To study any quantum system, we solve the original Schrödinger equation [28, 29]:

✓
P2

2m
�En`+V (r)

◆
yn`m (r) = 0, (1)

where the potential V (r) is taking as Coulomb potential minus Hulthèn potential written in the form:

V (r) =VC (r)�VH (r) =�A
r
+

V0e�d r

1� e�d r . (2)

Setting the wave function yn`m (r) = Rn`(r)Y`m(q ,f)r�1 to obtain the following radial Schrödinger
equation:

d2Rn`(r)
dr2 +


2µ

h̄2 (En`�V (r))� `(`+1)
r2

�
Rn` (r) . (3)

The radial wave function Rn`(r) satisfying Eq. (3), should be normalizable and finite near r = 0 and
r ! •for the bound-state solutions. The wave Eq. (3) with the interaction of Coulomb and Hulthèn
potentials cannot be solved analytically when ` 6= 0because of the centrifugal term `(`+1)

r2 . Therefore, to
solve Eq. (3) analytically, we must use an approximation scheme to deal with the centrifugal term. It is
found that the following

1
r2 =

d

2

�
1� e�d r

�2 (4)

is a good approximation to the centrifugal term in a short potential range. This approximation is valid
when d << 1. Substituting Eqs. (2) and (4) into Eq. (3), we obtain a differential equation of the form

2

66664
d2

dr2 +
2µEn,`+2µAd

h̄2 � `(`+1)d

2 �

 
2µd

⇣
A�V0

d

⌘

h̄2 + `(`+1)d

2

!
e�d r

1� e�d r � `(`+1)d

2e�d r

�
1� e�d r

�2

3

77775
Rn,` (r)= 0.

(5)
For bound state, the ground state wave function can be written in the form

U0` (r) = exp(�s W (r)dr) , (6)

where W (r) is called the superpotential in supersymmetric quantum mechanics [30, 31] which satisfy Eq.
(5). Substituting Eq. (6) into Eq. (5), we obtain the following equation for W (r):

d2Rn,`(r)
dr2 =W 2 (r)� dW (r)

dr
(7)
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where we take the superpotential W (r) as

W (r) = B0 +
B1

1� e�d r . (8)

Substituting Eq. (8) into Eq. (7) lead us to the following relations:

B2
0 =�2µEn`

h̄2 � 2µAd

h̄2 + `(`+1)d

2, (9a)

B1 =�d (`+1) . (9b)

B0 =
2µ (dA�V0)�B2

1h̄2 � `(`+1)d 2h̄2

2B1h̄2 . (9c)

Using the superpotential given in Eq. (8), we construct the supersymmetric partner potentials in the
following form:

U+ (r) =W 2 (r)+W
0
(r) = B2

0 +
2B0B1

1� e�d r +
B2

1
�
1� e�d r

�
�
1� e�d r

�2 � B1 (B1 +d )e�d r

�
1� e�d r

�2 , (10)

U� (r) =W 2 (r)�W
0
(r) = B2

0 +
2B0B1

1� e�d r +
B2

1
�
1� e�d r

�
�
1� e�d r

�2 � B1 (B1 �d )e�d r

�
1� e�d r

�2 . (11)

Eqs. (10) and (11) are shape invariant and thus satisfied the shape invariance condition. Therefore, the
two partner potentials are related by:

U+ (r,a0) =U� (r,a1)+R(a1) , (12)

where a1 is a function of a0, i.e. a1 = f (a0) = a0 �d and consequently, an = a0 �nd and the residual
term R(a1) is independent of the variable r. According to [32], the shape invariance holds via mapping
of the form: B0 ! B0 �d ,where B0 = a0. If all desirable results are obtained, then, one can obtain the
following relations:

R(a1) =

0

@
2µ(dA�V0)

h̄2 �a2
0 � `(`+1)d 2

2a0

1

A
2

�

0
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2µ(dA�V0)
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1 � `(`+1)d 2

2a1

1

A
2

, (13)
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0
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2a1

1

A
2

�

0
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2µ(dA�V0)
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2 � `(`+1)d 2

2a2

1

A
2

, (14)

R(an) =

0

@
2µ(dA�V0)
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n�1 � `(`+1)d 2

2an�1

1

A
2

�

0

@
2µ(dA�V0)
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2an

1

A
2

. (15)

Based on the concept of shape invariance approach and formalism [32, 33], we can determine the energy
equation of the U�(r) potential by using the formalism:

Ēn` = Ē(�)
n` + Ē0`, (16)
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Ē0` = 0, (17)

Ē(�)
n` =

n

Â
k=1

R(a
k

) =�

0
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2 =

0
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2
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A
2
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Substituting for an into Eq. (19), we obtain the energy eigenvalue equation as
:

En` =
`(`+1)d 2h̄2

2µ

�dA� h̄2

2µ

2

4
2µ

h̄2

⇣
A� V0

d

⌘
�d (`+n+1)2 � `(`+1)d

2(`+n+1)

3

5
2

. (20)

3. THE EIGENFUNCTION

In order to obtain unnormalized wave function, we define a new variable of the form s = e�d r.
Substituting this, into Eq. (5), we obtain equation of the form:

d2Rn`(s)
ds2 +

1
s

dRn`(s)
ds

+

"
N+b s+Cs2

[s(1� s)]2

#
Rn` (r) = 0, (21)

where
N=�2µEn`

h̄2
d

2
+

4µA
d

+ `(`+1) , (22)

b =�4`(`+1)� 4µ [2A+(A�V0)]

h̄2
d

2
, (23)

C =
4µ [A+(A�V0)]

h̄2
d

� 2µEn`

h̄2
d

2
+2`(`+1) . (24)

Analyzing the asymptotic behavior of (21) at origin when r ! 0(s ! 1)and at infinity when r ! •(s ! 0),
Eq. (21) has solution

Un` (r) = (1� s)a sa , (25)

where
a =�2µEn`

h̄2
d

2
� 2µA

h̄2
d

� `(`+1) ,a =�(`+1)d . (26)

by taking trial wave function of the form Rn` (s) = (1� s)a sa and inserting it into Eq. (21), one obtain

f
00
(s)+ f

0
(s)

(2a +1)� s(2a +2a+1)

s(1� s)

�
� f (s)

"
(a +a)2 +N

s(1� s)

#
= 0. (27)

Eq. (27) is a differential equation satisfied by the hypergeometric function. Thus, its solution is obtain as

f (s) = F1 (�n, n+2a +2a;2a +1, s) . (28)

Replacing the function f (s) with the hypergeometric function and write the complete radial wave function
as

Rn` (s) = Nsa (1� s)a F1 (�n, n+2a +2a;2a +1, s) , (29)

where N is the normalization constant.
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Figure 1. Variation of the energy spectrum as a function of the screening parameter d with A = 1,V0 = 2µ = h̄ = 1.

4. BOUND STATE SOLTIONS USING NIKIFOROV-UVAROV METHOD

In other to test the accuracy of our result, we solve the same problem using Nikiforov-Uvarov (NU)
method and compare it with the result obtained using SUSY. With Eqs. (2) and (4), Eq. (3) becomes

d2Rn`(r)
dr2 +

"
2µEn`

h̄2 +
2µA
h̄2

d

1� e�d r �
2µ

h̄2
V0

ed r �1
� `(`+1)d

2

�
1� e�d r

�2

#
Rn` (r) = 0. (30)

For solving the above equation using NU method, let us consider the differential equation [34]:

(
d2

ds2 +
a1 �a2s

s(1�a3s)
d
ds

+

⇥
�x1s2 +x2s�x3

⇤

s2 (1� s)2

)
y (s) = 0, (31)

where,

a4 =
1
2
(1�a1) ,a5 =

1
2
(a2 �2a3) ,a6 = a

2
5 +x1,a7 = 2a4a5 �x2,

a8 = a

2
4 +x3,a9 = a3a7 +a

2
3 a8 +a6.

To obtain the solution of Eq. (30), we first introduce s = e�d rto obtain

d2Rn`(s)
ds2 +

1� s
s(1� s)

dRn`(s)
ds

+

"
�D(1� s)2 +(P�Qs)(1� s)� `(`+1)d

2

s2 (1� s)2
d

2

#
Rn` (s) = 0, (32)

where,

D =�2µEn`

h̄2 ,P =
2µdA

h̄2 ,Q =
2µV0

h̄2 .
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Figure 2. Variation of the energy spectrum as a function of the Potential strength with V0 = h̄ = d = 2µ = 1.

Comparing Eq. (31) with Eq. (32), we find the following relations:

a1 = 1,a2 = 1,a3 = 1,a4 = 0,a5 =�1
2
,x1 =�2µ (En`+Ad )

h̄2
d

2
+ `(`+1) ,

x2 =�2µ(2En`+dA+V0)

h̄2
d

2
, ,x3 =�2µEn`

h̄2
d

2
� 2µV0

h̄2
d

2
,a6 =

1
4
+

2µ(V0 �En`)

h̄2
d

2
, ,

a7 =
2µ(Ad +V0 �2En`)

h̄2
d

2
,a8 = `(`+1)� 2µ(Ad +En`)

h̄2
d

2
,a9 =

✓
`+

1
2

◆2
.

Following the Nikiforov-Uvarov method [13], we obtain the bound state energy condition

a2n� (2n+1)a5 +(2n+1)(
p

a9 +a3
p

a8 +n(n�1)a3

+a7 +2a3a8 +2
p

a8a9 = 0, (33)

which gives the energy eigenvalues of the system as

En` =
`(`+1)d 2h̄2

2µ

�dA� h̄2

2µ

2

4
2µ

h̄2

⇣
A� V0

d

⌘
�d (`+n+1)2 � `(`+1)d

2(`+n+1)

3

5
2

. (34)

Eq. (20) is identical to Eq. (34). Now, let us consider some special cases. As d approaches zero and
V0 = 0, the potential given in Eq. (2) reduces to Coulomb potential and the energy equation becomes

En` =
`(`+1)d 2h̄2

2µ

�dA� h̄2

2µ

" 2µ

h̄2 A�d (`+n+1)2 � `(`+1)d

2(`+n+1)

#2

. (35)
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Figure 3. Variation of the energy spectrum as a function of the particle mass with d = 1, A = 2, V0 = 1 and h̄ = 1.

Table 1. Energy spectrum (�En` in f m�1) with 2µ = h̄ = 1.

state n ` d A = 6,V0 = 2 A = 2,V0 = 6 A =V0 = 3
2p 0 1 0.10

0.15
0.20

13.72250000
4.836736111
2.490000000

214.6225000
94.57562500
53.29000000

47.71000000
20.17562500
11.09000000

3p 1 1 0.10
0.15
0.20

6.733611111
2.841674383
1.867777778

97.02250000
43.67006944
25.33444444

22.03361111
9.811736111
5.801111111

3d 0 2 0.10
0.15
0.20

6.673611111
2.551118827
1.361111111

97.94027778
44.40173611
25.89444444

22.26250000
9.843402778
5.650000000

4p 2 1 0.10
0.15
0.20

4.300625000
2.172934028
1.702500000

55.87562500
25.88265625
15.60250000

13.06000000
6.213906250
4.002500000

4d 1 2 0.10
0.15
0.20

4.100625000
1.766684028
1.102500000

56.22562500
26.05140625
15.60251000

13.02250000
5.988906250
3.602500000

4f 0 3 0.10
0.15
0.20

3.810000000
1.178402778
0.240000000

56.76000000
26.32562500
15.64000000

12.97562500
5.672500000
3.040000000

5p 3 1 0.10 3.188900000 36.84490000 8.920900000
5d 2 2 0.10 2.924000000 36.93210000 8.760100000
5f 1 3 0.10 2.532900000 37.06890000 8.524900000
5g 0 4 0.10 2.022500000 37.26250000 8.222500000
6p 4 1 0.10 2.600277778 26.52250000 6.687777778
6d 3 2 0.10 2.300277778 26.46694444 6.460000000
6f 2 3 0.10 1.854444444 26.38777778 6.122500000
6g 1 4 0.10 1.267777778 26.29000000 5.680277778
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Similarly, when A = 0,the potential Eq. (2) reduces to Hulthèn and the energy equation turns to

En` =
`(`+1)d 2h̄2

2µ

� h̄2

2µ

2

4
2µ

h̄2

⇣
�V0

d

⌘
�d (`+n+1)2 � `(`+1)d

2(`+n+1)

3

5
2

.. (36)

WhenV0 = db, Eq. (34) turns to energy equation for the Hellmann potential which is identical to Eq. (24)
of Ref. [13].

En` =
`(`+1)d 2h̄2

2µ

� h̄2

2µ

" 2µ

h̄2 (A�b)�d (`+n+1)2 � `(`+1)d

2(`+n+1)

#2

. (37)

In Figure 1 - Figure 3, we have plotted energy with d , A and µ. In Figure 1, the energy increases
with d and later decreases. In Figure 2, as A increases, the energy decreases (attractive). We numerically
reported energy eigenvalues for Coulomb potential minus Hulthèn potential. It is deduced that as d

increases, the energy increases towards positive. The energy is more attractive (negative) when A <V0 as
shown in the Table 1.

5. CONCLUSION

In this work, we have solved the Schrödinger equation for the combination of Coulomb potential and
Hulthèn potential in the framework of supersymmetric and Nikiforov-Uvarov methods by considering a
suitable approximation scheme to get rid of the centrifugal barrier and obtained energy eigenvalues and
the wave functions. It is seen that the energy equation obtained with the two methods are identical. This
shows that the two methods are in excellent agreement. Some special cases of interest of the solution
are obtained. These are eigenvalues for Coulomb potential, Hulthèn potential and Hellmann potential by
putting V0 = 0, A = 0 and V0 = db respectively. In Figure 1 - Figure 3, we make some plots to see the
behavior of energy with screening parameter, potential strength and particle mass.
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