
 

Computational and Applied Mathematics Journal 
2018; 4(2): 43-50 

http://www.aascit.org/journal/camj 

ISSN: 2381-1218 (Print); ISSN: 2381-1226 (Online) 
 

Approximate Analytical Solutions of the Effective 
Mass Klein-Gordon Equation for Yukawa Potential 

Onate Clement Atachegbe 

Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria 

Email address 
oaclems14@physicist.net 

Citation 
Onate Clement Atachegbe. Approximate Analytical Solutions of the Effective Mass Klein-Gordon Equation for Yukawa Potential. 

Computational and Applied Mathematics Journal. Vol. 4, No. 2, 2018, pp. 43-50. 

Received: January 9, 2018; Accepted: January 24, 2018; Published: March 10, 2018 

 

Abstract: The analytical solutions of the Klein-Gordon equation with the Yukawa potential is presented within the 

framework of an approximation to the centrifugal potential for any arbitrary ℓ  state with the position-dependent mass using 

the parametric Nikiforov-Uvarov method. The energy eigenvalues and the corresponding wave function have been obtained. 

The energy for both the scalar potential and vector potential as well as the effect of the screening parameter on each of the 

energy for scalar potential and vector potential are investigated in detail. The nonrelativistic limit is obtained and numerical 

results are computed. It is found that our results for the constant mass and that of the nonrelativistic limit are in good 

agreement with the one in the literature. 
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1. Introduction 

In the recent years, there has been an increasing interest in 

finding the analytical solutions of the relativistic Klein-

Gordon equation [1-6]. This is because, the relativistic Klein-

Gordon equation with some physical potentials of interest 

play significant roles in the relativistic quantum mechanics. 

Thus, some known physical potentials with the Klein-Gordon 

equation have received considerable attentions from many 

researchers in the past years. For instance, Ibrahim et al. [7], 

obtained analytical solutions of the N-dimensional Klein-

Gordon equation and Dirac equation with Rosen-Morse 

potential. Falaye [8], solved the Klein-Gordon equation with 

ring-shaped potentials. Ikhdair and Hamzavi [9], investigated 

the effects of external fields on a two-dimensional Klein-

Gordon equation of a particle under Pseudo-harmonic 

oscillator interaction. Hamzavi et al. [10] also studied 

spinless particles in the field of unequal scalar-vector 

Yukawa potentials. Dong [11], studied relativistic treatment 

of the spinless particles subject to a rotating Deng-Fan 

oscillator. Sun and Dong [12], studied relativistic treatment 

of the spinless particles subject to Tietz-Wei oscillator, Wei 

and Liu [13], obtained relativistic bound states of the 

hyperbolical potential with the centrifugal term. Ikhdair and 

Sever [14], obtained exact solutions of the Klein-Gordon 

equation for the PT-symmetric generalized woods-saxon 

potential using Nikiforov-Uvarov method. In addition, 

Ikhdair and Sever [15], also studied the exact bound states of 

the D-dimensional Klein-Gordon equation with equal scalar 

and vector ring-shaped pseudoharmonic potentials. 

Berkdemir [16], investigated the relativistic treatment of a 

spin-zero particle subject to the Kratzer-type potential. Dong 

et al. [17], studied the Klein-Gordon equation with a 

Coulomb potential in D dimensions. It is noted that some of 

the potentials mentioned above do not admit exact solutions 

due to the existence of the inverse squared term or centrifugal 

term attached to them. A typical example of such potentials 

is the Yukawa potential. The Yukawa potential was proposed 

by Hideki Yukawa [18] in the 1930s. This potential was 

showed to have arisen from the exchange of a massive scalar 

field such as the field of massive boson [18]. The Yukawa 

potential has various applications in the field of studied. The 

Yukawa potential modified for the finite size of the 

dispersing particle was represented with sufficient accuracy 

the influence of ionic concentration of the rigidity of 

colloidal systems of the polystyrene spheres and ovalbumin 

molecules [19, 20]. It was equally applied to the auto-

controlled mechanism of the ovalbumin molecules in 
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aqueous systems [21]. Matsumoto and Inoue [22] also used 

Yukawa potential to analyze the novel phenomenon in a 

solidlike structure in ovalbumin aqueous collides. The 

Yukawa potential is of the form [18] 

e
( ) ,

r

YV r
r

δλ −
= −                               (1) 

where λ  is the strength of the potential and δ is the screening 

parameter. When the screening parameter tends to zero, the 

Yukawa potential (1) reduces to pure Coulomb potential. 

( )
0

.lim
→

= −Y rV
rδ

λ
                             (2) 

The Yukawa potential interacts with the Coulomb potential 

to generate the Hellmann potential [23] which has vigorous 

application in the representation of electron core interaction 

[24], alkali hydride molecules [25] and the study of the inner 

shell ionization problems [26]. The effective mass Klein-

Gordon equation with Yukawa potential was studied by Arda 

and Sever [27] for a case when the scalar potential equals 

zero i.e. ( ) 0S r =  with mass function 0m  and 1.m  What is 

desired here is to investigate the analytical solutions of the 

effective mass Klein-Gordon equation with Yukawa potential 

for a case when ( ) ( )V r S r≠  and a case when ( ) 0.V r =  

The scheme of our work is as follow: In the next section, we 

present a brief parametric Nikiforov-Uvarov method. In 

section 3, the bound state solution of the effective mass 

Klein-Gordon equation is presented while in the last section, 

we give the concluding remark. 

2. Parametric Nikiforov-Uvarov 

Method 

Given the general form of the Schrӧdinger equation as [28, 

29], 

( ) ( ) ( )
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Tezcan and Sever [29, 30] gave the energy condition as 

( ) ( ) ( )2 5 9 383 7 3 8 9(2 1)2 1 1 2 2 1 2 ,n n n n nnα α α α α α α α α α − + + − + + = − + ++ +                        (4) 

and the corresponding wave function is given as 
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where ( , ) ( ),v
nP xµ  1,µ > −  1,v > −  are Jacobi polynomials. The parameters iα  

( 1,2,3,...........,13)i =  are deduced as follows: 
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3. Bound State Solution 

The Klein-Gordon Equation with Scalar potential ( )S r  

and Vector Potential ( )V r of a particle of mass M and 

relativistic energy ℓnE  in natural unit ( )1ℏ c= =  is given as 

( ) ( )
2

22

2 2
(

( 1)
( ) ( ) 0) .

ℓ ℓ

ℓ ℓ

n nV r r
d

M S r E U
dr r

 
+ +

+− 
  

− − =  (7) 

In order to solve Eq. (7) above, we take the mass function as 

( ) 1
0 ,

1

r

r

m e
m

e
M r

δ

δ

−

−= +
−

                        (8) 

where 0m  and 1m  are two positive constants. The scalar and 

vector potentials are taken as the Yukawa potential 

respectively: 

( ) 0 ,
rS e

S r
r

δ−−
=                              (9) 

( ) 0 .
rV e

V r
r

δ−−
=                            (10) 

Due to the presence of the centrifugal term in Eq. (7), we 

resort to apply the following approximation-type to deal with 

the centrifugal term 
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Now, substituting Eqs. (8), (9), (10) and (11) into Eq. (7) 

and by defining y re δ−= we have 
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where 
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Comparing Eq. (12) with Eq. (3), we deduce the analytic values given in the appendix. Using the analytic values in the 

appendix into Eq. (4), the energy equation and the corresponding wave function for the effective mass function are obtain 

respectively as 
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where 
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3.1. Case 2 

When the scalar potential equal to zero i.e. ( ) 0,S r =  then, Eq. (7) reduces to 
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and Eq. (16) becomes 

( )
( ) ( ) ( ) ( )

( )

20 0 1
0

2
2

2
2 2

2

2 2
0

2
0

. 1
2 2 1

1 2 1 41 1 2

1

1 2

2
.

2 1 4
ℓ

ℓ
ℓ

ℓ ℓ

ℓ

ℓ ℓ
n

n

V E m m
n V

E m

V

n n

n

δ δδ δ
− + − +  − − + + +  

  − + −
 + 
 

+ +
=

+ + +
              (20) 

3.2. Case 3 

When the vector potential equal to zero i.e. ( ) 0,V r =  Eq. (7) reduces to 
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and then, Eq. (16) reduces to 
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4. Discussion 

In Table 1, we compared our results with the previous 

results. It is observed that our results show a good agreement 

with the previous one by Arda and Sever who obtained the 

solution of Klein-Gordon equation for a mass function with 

only vector Yukawa potential. In Table 2, we reported the 

eigenvalues with different values of the scalar and vector 

potentials. It is observed that the eigenvalues obtained with 

0 0S V>  are lesser than their counterpart with 0 0V S> . In 

Table 3, we reported the eigenvalues for vector potential and 

scalar potential separately. It is noted from the Table that in the 

case of vector potential, the positive and negative energy 

eigenvalues obtained differs but for the scalar potential, the 

positive and negative energy eigenvalues are numerically the 

same. It is also deduced from Table 4, that for the same 

numerical value used for vector and scalar potentials, the 

energy eigenvalues for the vector potential are higher in 

magnitude compare to that obtained with the scalar potential. 

In Tables 4 and 5, we presented the numerical results for a 

constant mass with 0 0 ,S V=  0 0S V<  and 0 0S V>
respectively. In Tables 6 and 7, we computed numerical results 

for various states, angular momentum quantum number and 

the potential strength. These results are compared with results 

obtained from analytical method and AIM. 

For a constant mass, 1 0m = and 0m M= . Thus the energy 

equation of the Klein-Gordon equation with unequal scalar 

and vector potentials with constant mass becomes 
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             (24) 

In a case where the scalar potential and the vector potential are equal for a constant mass, the energy equation becomes 
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To the best of our knowledge, there is no experimental evidence for this solutions. Thus, our calculations are only of 

academic interest. It therefore becomes very necessary to test the accuracy of our calculations. To do this, we obtain the non-

relativistic limit of Eq. (25) by considering the following transformation 
2

2
ℓ

ℏ
nEM

µ+ =  and ℓ ℓn nE EM − = − . The Klein-

Gordon equation solved in this case is in a potential 2V . However, Alhaidari et al. [31], pointed out that the Klein-Gordon 

equation whose non-relativistic limit equals the Schrӧdinger equation, is the Klein-Gordon equation with potential V  and not 

2 .V  The energy Eq. (25) is for Klein-Gordon equation with potential 2 .V  For potentialV , Eq. (25) becomes 
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Using the transformation given above, the non-relativistic limit of Eq. (26) becomes 
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Table 1. Comparison of the eigenvalues for 0 0,S =  0 1M = and 1 0.1M = . 

n  ℓ  δ  0V  
nE
ℓ  nE−

ℓ  

present [27] present [27] 

0 0 0.01 0.10 0.999199 0.999181 0.998200 0.998173 

  0.10 0.01 0.994631 0.995475 0.995611 0.994475 

1 0 0.01 0.10 0.999212 0.999987 0.998217 0.998985 

  0.10 0.01 0.995475 0.980294 0.994475 0.979294 

 1 0.01 0.10 0.999789 0.999911 0.998569 0.998910 

  0.10 0.01 0.973433 0.954438 0.972211 0.953438 

2 0 0.01 0.10 0.999834 0.999913 0.998836 0.998912 

  0.10 0.01 0.989183 0.954440 0.988183 0.953440 

 1 0.01 0.10 0.999896 0.999622 0.998722 0.998622 

  0.10 0.01 0.964598 0.917015 0.963474 0.916015 

 2 0.01 0.10 0.999639 0.999200 0.998401 0.998199 

  0.10 0.01 0.919255 0.866525 0.918015 0.865525 

Table 2. Energy eigenvalues for 0 0S V>  and 0 0S V<  with 0 1m = and 1 0.1m = . 

n  ℓ  δ  
0 1,V = 0 2.S =  0 2,V = 0 1.S =  

nE
ℓ  nE−

ℓ  nE
ℓ  nE−

ℓ  

0 0 0.1 0.7381321787 0.9987261947 0.8080766782 0.8542423602 

  0.2 0.3854265220 0.9386134340 0.6592013534 0.9237071838 

1 0 0.1 0.8003546018 0.9920735842 0.8387227205 0.9387427245 

  0.2 0.5213698583 0.9079360473 0.6766325949 0.9896917707 

0 1 0.1 0.7389521495 0.9828713267 0.7995194617 0.8954866609 

  0.2 0.3288767975 0.8271881889 0.5930853382 0.9369528056 

1 1 0.1 0.7867708715 0.9734013059 0.8233389353 0.9541662973 

  0.2 0.4224599938 0.7928325762 0.5960377139 0.9591212145 

0 2 0.1 0.7173741544 0.9441443364 0.7721856175 0.9322628032 

  0.2 0.0266460204 0.4791987774 0.4243296275 0.8669887330 

2 0 0.1 0.8227535123 0.9815654305 0.8483420024 0.9793978934 

  0.2 0.5469616818 0.8606692272 0.6573090574 0.9980564492 

2 1 0.1 0.8033280371 0.9608485139 0.8295093602 0.9808531902 

  0.2 0.4238361236 0.7330821942 0.5646457263 0.9389215255 

Table 3. Energy eigenvalues for 0 0S =  and 0 0V =  with 0 1m = and 1 0.1m = . 

n  ℓ  δ  
0 1,V = 0 0.S =  0 0,V = 0 1.S =  

nE
ℓ  nE−

ℓ  nE
ℓ  nE−

ℓ  

0 0 0.1 0.9987864821 0.4907214371 0.9987492177 0.9987492177 

  0.2 0.9305722548 0.7436217716 0.9121416177 0.9121416177 

1 0 0.1 0.9939861024 0.8138776942 0.9931754873 0.9931754873 

  0.2 0.9228638305 0.9446130253 0.9099188673 0.9099188673 

0 1 0.1 0.9815306962 0.7642101830 0.9816196551 0.9816196551 

  0.2 0.8578328241 0.8991725675 0.8237839752 0.8237839752 

1 1 0.1 0.9747794364 0.9068297308 0.9737974815 0.9737974815 

  0.2 0.8397800592 0.9558052064 0.8110066978 0.8110066978 

0 2 0.1 0.9441431506 0.9011913328 0.9423428588 0.9423428588 

  0.2 0.6884032443 0.8705342671 0.5996427023 0.5996427023 

2 0 0.1 0.9865650821 0.9304278595 0.9845795617 0.9845795617 

  0.2 0.8961909438 0.9968308930 0.8814237163 0.8814237163 

2 1 0.1 0.9654813434 0.9629901840 0.9633202543 0.9633202543 

  0.2 0.8033675472 0.9521219676 0.7715990292 0.7715990292 
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Table 4. Eigenvalues ℓnE  of the relativistic Klein-Gordon equation with constant mass. 

n  ℓ  δ  0 0 2V S= =  0 2,V = 0 1,S =  0 1,V = 0 2.S =  

0 0 0.1 0.995866468 0.995866468 0.996475614 

  0.2 0.982824186 0.982824186 0.984881450 

1 0 0.1 0.992499153 0.992499153 0.993782347 

  0.2 0.969268245 0.969268245 0.974184904 

0 1 0.1 0.978373838 0.978373838 0.976895583 

  0.2 0.910805823 0.910805823 0.903633973 

1 1 0.1 0.975350777 0.975350777 0.975371301 

  0.2 0.897867316 0.897867316 0.897189496 

0 2 0.1 0.939659637 0.939659637 0.935630939 

  0.2 0.734690336 0.734690336 0.711036751 

2 0 0.1 0.986828727 0.986828727 0.988499668 

  0.2 0.946076743 0.946076743 0.952602495 

2 1 0.1 0.969455622 0.969455622 0.970089816 

  0.2 0.872287550 0.872287550 0.874197717 

Table 5. Eigenvalues ℓnE−  of the relativistic Klein-Gordon equation with constant mass. 

n  ℓ  δ  0 0 2V S= =  0 2,V = 0 1,S =  0 1,V = 0 2.S =  

0 0 0.1 0.999916580 0.999916580 0.999753637 

  0.2 0.999556933 0.999556933 0.998717146 

1 0 0.1 0.997795164 0.997795164 0.997308924 

  0.2 0.990716697 0.990716697 0.988567173 

0 1 0.1 0.986253971 0.986253971 0.982929931 

  0.2 0.942664230 0.942664230 0.928113741 

1 1 0.1 0.982596249 0.982596249 0.980048101 

  0.2 0.927044373 0.927044373 0.916067025 

0 2 0.1 0.951183898 0.951183898 0.934130919 

  0.2 0.780977831 0.780977831 0.741210646 

2 0 0.1 0.992969952 0.992969952 0.992301070 

  0.2 0.970798163 0.970798163 0.967952069 

2 1 0.1 0.976692728 0.976692728 0.974412564 

  0.2 0.901361032 0.901361032 0.891589676 

 

Table 6. Comparison of energy eigenvalues ℓnE−  of the Yukawa potential 

with 1,ℏ µ= = 2λ = and 
2

= gλδ  with other methods. 

State g  Present [32] [33] 

2p 

0.002 0.24700 0.24601 0.24601 

0.005 0.23802 0.24012 0.24010 

0.010 0.22905 0.23049 0.23040 

0.020 0.20820 0.21192 0.21160 

0.025 0.19632 0.20298 0.20250 

0.050 0.14622 0.16148 0.16000 

3p 

0.002 0.10867 0.10716 0.10714 

0.005 0.10142 0.10141 0.10133 

0.010 0.09427 0.09230 0.09201 

0.020 0.07796 0.07570 0.07471 

0.025 0.06888 0.06815 0.06673 

0.050 0.03223 0.03711 0.03361 

3d 

0.002 0.10778 0.10715 0.10714 

0.005 0.09779 0.10136 0.10133 

0.010 0.08783 0.09212 0.09201 

0.020 0.06464 0.07503 0.07471 

0.025 0.05144 0.06714 0.06673 

0.050 0.04331 0.03383 0.03361 

Table 7. Comparison of energy eigenvalues ℓnE−  of the Yukawa potential 

with 2 1,ℏ µ= = and 0.4δ = with other methods. 

λ  ℓ  Present [34] [33] 

4 0 3.2400 3.2199 3.2400 

8 
0 14.440 14.420 14.440 

1 1.6400 2.4332 2.5600 

16 
0 60.840 60.819 60.840 

1 12.740 12.838 12.960 

24 

0 139.24 139.22 139.24 

1 30.840 31.239 31.360 

2 11.040 11.246 11.560 

5. Conclusion 

In this work, we have examined the position dependent 

mass function of the Klein-Gordon equation with unequal 

scalar and vector Yukawa potential by employing a suitable 

approximation scheme to the centrifugal term in the 

framework of parametric Nikiforov-Uvarov method. The 

effect of both the scalar potential and vector potential are 

numerically studied in detail. By using some transformation, 

we have obtained the non-relativistic limit of the Klein-
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Gordon equation. Numerical results are computed for the 

non-relativistic limit and compared with results of other 

methods previously obtained. Our results are found to be in 

good agreement with the previous results. 

Appendix 

Parametric constants 
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