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Abstract: The analytical solutions of the Klein-Gordon equation with the Yukawa potential is presented within the
framework of an approximation to the centrifugal potential for any arbitrary ¢ state with the position-dependent mass using
the parametric Nikiforov-Uvarov method. The energy eigenvalues and the corresponding wave function have been obtained.
The energy for both the scalar potential and vector potential as well as the effect of the screening parameter on each of the
energy for scalar potential and vector potential are investigated in detail. The nonrelativistic limit is obtained and numerical
results are computed. It is found that our results for the constant mass and that of the nonrelativistic limit are in good

agreement with the one in the literature.
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1. Introduction

In the recent years, there has been an increasing interest in
finding the analytical solutions of the relativistic Klein-
Gordon equation [1-6]. This is because, the relativistic Klein-
Gordon equation with some physical potentials of interest
play significant roles in the relativistic quantum mechanics.
Thus, some known physical potentials with the Klein-Gordon
equation have received considerable attentions from many
researchers in the past years. For instance, Ibrahim et al. [7],
obtained analytical solutions of the N-dimensional Klein-
Gordon equation and Dirac equation with Rosen-Morse
potential. Falaye [8], solved the Klein-Gordon equation with
ring-shaped potentials. Ikhdair and Hamzavi [9], investigated
the effects of external fields on a two-dimensional Klein-
Gordon equation of a particle under Pseudo-harmonic
oscillator interaction. Hamzavi et al. [10] also studied
spinless particles in the field of unequal scalar-vector
Yukawa potentials. Dong [11], studied relativistic treatment
of the spinless particles subject to a rotating Deng-Fan
oscillator. Sun and Dong [12], studied relativistic treatment
of the spinless particles subject to Tietz-Wei oscillator, Wei
and Liu [13], obtained relativistic bound states of the
hyperbolical potential with the centrifugal term. Ikhdair and

Sever [14], obtained exact solutions of the Klein-Gordon
equation for the PT-symmetric generalized woods-saxon
potential using Nikiforov-Uvarov method. In addition,
Ikhdair and Sever [15], also studied the exact bound states of
the D-dimensional Klein-Gordon equation with equal scalar
and vector ring-shaped pseudoharmonic potentials.
Berkdemir [16], investigated the relativistic treatment of a
spin-zero particle subject to the Kratzer-type potential. Dong
et al. [17], studied the Klein-Gordon equation with a
Coulomb potential in D dimensions. It is noted that some of
the potentials mentioned above do not admit exact solutions
due to the existence of the inverse squared term or centrifugal
term attached to them. A typical example of such potentials
is the Yukawa potential. The Yukawa potential was proposed
by Hideki Yukawa [18] in the 1930s. This potential was
showed to have arisen from the exchange of a massive scalar
field such as the field of massive boson [18]. The Yukawa
potential has various applications in the field of studied. The
Yukawa potential modified for the finite size of the
dispersing particle was represented with sufficient accuracy
the influence of ionic concentration of the rigidity of
colloidal systems of the polystyrene spheres and ovalbumin
molecules [19, 20]. It was equally applied to the auto-
controlled mechanism of the ovalbumin molecules in
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aqueous systems [21]. Matsumoto and Inoue [22] also used
Yukawa potential to analyze the novel phenomenon in a
solidlike structure in ovalbumin aqueous collides. The
Yukawa potential is of the form [18]

-or
Vymz—“r , (1)

where A is the strength of the potential and 9 is the screening
parameter. When the screening parameter tends to zero, the
Yukawa potential (1) reduces to pure Coulomb potential.
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The Yukawa potential interacts with the Coulomb potential
to generate the Hellmann potential [23] which has vigorous
application in the representation of electron core interaction
[24], alkali hydride molecules [25] and the study of the inner
shell ionization problems [26]. The effective mass Klein-
Gordon equation with Yukawa potential was studied by Arda
and Sever [27] for a case when the scalar potential equals

zero i.e. S (r) =0 with mass function m, and m,. What is

desired here is to investigate the analytical solutions of the
effective mass Klein-Gordon equation with Yukawa potential

for a case when V(r)iS(r) and a case when V(r) =0.

The scheme of our work is as follow: In the next section, we
present a brief parametric Nikiforov-Uvarov method. In
section 3, the bound state solution of the effective mass
Klein-Gordon equation is presented while in the last section,
we give the concluding remark.

2. Parametric Nikiforov-Uvarov
Method

Given the general form of the Schrodinger equation as [28,
29],

U“(r)+|:—al_azs }U s)+ A e U(s)

(s(l—s))2

Tezcan and Sever [29, 30] gave the energy condition as

=0. (3)
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and the corresponding wave function is given as
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where Pn(”’v) (x), #>-1 v>-1, are Jacobi polynomials. The parameters &;

(=123 ... ,13) are deduced as follows:
- a, —2a;,
a, = a
T2 7 2

— 2 _ _
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3. Bound State Solution

The Klein-Gordon Equation with Scalar potential S(7)
and Vector Potential V() of a particle of mass M and

relativistic energy E,, in natural unit (h =c= 1) is given as

2
%+(M +S(r))2 (&, —V(r))2 _ f(i:l) U, (1) =0. (7)

In order to solve Eq. (7) above, we take the mass function as

g ®

_ 2 _
0 =05 +{,,0, =20,405 = ¢,

(6)

where m, and m; are two positive constants. The scalar and

vector potentials are taken as the Yukawa potential
respectively:

_ -or

5(r)=22—, ©)
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()= (10)

Due to the presence of the centrifugal term in Eq. (7), we
resort to apply the following approximation-type to deal with
the centrifugal term
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o+l 5(54_1)52 Now, substituting Eqgs. (8), (9), (10) and (11) into Eq. (7)
2 (1 s )2 : (11)  and by defining y = ¢™%" we have
e
Uy (y) . 1=y dU,(v) 4y +dps+ 4, -
2 = o Uy (v)=0, (12)
d ) (-
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Comparing Eq. (12) with Eq. (3), we deduce the analytic values given in the appendix. Using the analytic values in the
appendix into Eq. (4), the energy equation and the corresponding wave function for the effective mass function are obtain
respectively as

2
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3.1. Case 2
When the scalar potential equal to zero i.e. S (r) =0, then, Eq. (7) reduces to
2
Lo (£, ) -2 0 =0, (19)
dr r
and Eq. (16) becomes
2
—n(n+1)—2£(z+1)+72V05E"4’ —72'”02'”1 .—;(l+(n+l) (1+20)° +4V02j
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3.2. Case 3

When the vector potential equal to zero i.e. V (r) =0, Eq. (7) reduces to



46 Onate Clement Atachegbe: Approximate Analytical Solutions of the Effective Mass
Klein-Gordon Equation for Yukawa Potential

dr?

and then, Eq. (16) reduces to

Ey =mg —L((+1)0% =&

where

N 2mS, : 2mym,

Oy =-n(n+1)-2¢(¢+1) > (23)

4. Discussion

In Table 1, we compared our results with the previous
results. It is observed that our results show a good agreement
with the previous one by Arda and Sever who obtained the
solution of Klein-Gordon equation for a mass function with
only vector Yukawa potential. In Table 2, we reported the
eigenvalues with different values of the scalar and vector
potentials. It is observed that the eigenvalues obtained with
Sy >V, are lesser than their counterpart with ¥, >S; . In

Table 3, we reported the eigenvalues for vector potential and
scalar potential separately. It is noted from the Table that in the

2n +1+\/(1 +20)° +4m?S2 +
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case of vector potential, the positive and negative energy
eigenvalues obtained differs but for the scalar potential, the
positive and negative energy eigenvalues are numerically the
same. It is also deduced from Table 4, that for the same
numerical value used for vector and scalar potentials, the
energy eigenvalues for the vector potential are higher in
magnitude compare to that obtained with the scalar potential.
In Tables 4 and 5, we presented the numerical results for a
mass with S, =V, So<Vy and S, >V,
respectively. In Tables 6 and 7, we computed numerical results
for various states, angular momentum quantum number and
the potential strength. These results are compared with results
obtained from analytical method and AIM.

For a constant mass, #n; =0 andm, =M . Thus the energy

equation of the Klein-Gordon equation with unequal scalar
and vector potentials with constant mass becomes

constant

2

En =M*~-1((t+1)0" 0"

—n(n+1)+ —(1+(n+1) (1+2€)2+4V02j
2 24)
2n+1+4(1420) + 477
In a case where the scalar potential and the vector potential are equal for a constant mass, the energy equation becomes
2
2A(M +E,,
2A(M+E,) ”‘)—z(z+1)—(1+f+n)2
E% =M* = 0(0+1)8% - & g (25)

2(n+0+1)

To the best of our knowledge, there is no experimental evidence for this solutions. Thus, our calculations are only of
academic interest. It therefore becomes very necessary to test the accuracy of our calculations. To do this, we obtain the non-

2
relativistic limit of Eq. (25) by considering the following transformation M +E,, =h—’§1 and M —E,, =-F,,. The Klein-
Gordon equation solved in this case is in a potential 2/ . However, Alhaidari et al. [31], pointed out that the Klein-Gordon
equation whose non-relativistic limit equals the Schrodinger equation, is the Klein-Gordon equation with potential ¥ and not

2V. The energy Eq. (25) is for Klein-Gordon equation with potential 2V. For potential V", Eq. (25) becomes

2
A(M;E””) —0(e+1)=(1+2+n)

Ey, =M?—(((+1)0° -0" (26)

2(n+0+1)

Using the transformation given above, the non-relativistic limit of Eq. (26) becomes
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Table 1. Comparison of the eigenvalues for S, =0, M, =land M, =0.1.

47

27

E, -E,
s v,
present [27] present [27]
0.01 0.10 0.999199 0.999181 0.998200 0.998173
0.10 0.01 0.994631 0.995475 0.995611 0.994475
0.01 0.10 0.999212 0.999987 0.998217 0.998985
0.10 0.01 0.995475 0.980294 0.994475 0.979294
0.01 0.10 0.999789 0.999911 0.998569 0.998910
0.10 0.01 0.973433 0.954438 0.972211 0.953438
0.01 0.10 0.999834 0.999913 0.998836 0.998912
0.10 0.01 0.989183 0.954440 0.988183 0.953440
0.01 0.10 0.999896 0.999622 0.998722 0.998622
0.10 0.01 0.964598 0.917015 0.963474 0.916015
0.01 0.10 0.999639 0.999200 0.998401 0.998199
0.10 0.01 0.919255 0.866525 0.918015 0.865525
Table 2. Energy eigenvalues for S, >V, and S, <V, with my =1and m, =0.1.
V,=1, S, =2. V,=2, S, =1.
? E, -E, E, -E,,
0.1 0.7381321787 0.9987261947 0.8080766782 0.8542423602
0.2 0.3854265220 0.9386134340 0.6592013534 0.9237071838
0.1 0.8003546018 0.9920735842 0.8387227205 0.9387427245
0.2 0.5213698583 0.9079360473 0.6766325949 0.9896917707
0.1 0.7389521495 0.9828713267 0.7995194617 0.8954866609
0.2 0.3288767975 0.8271881889 0.5930853382 0.9369528056
0.1 0.7867708715 0.9734013059 0.8233389353 0.9541662973
0.2 0.4224599938 0.7928325762 0.5960377139 0.9591212145
0.1 0.7173741544 0.9441443364 0.7721856175 0.9322628032
0.2 0.0266460204 0.4791987774 0.4243296275 0.8669887330
0.1 0.8227535123 0.9815654305 0.8483420024 0.9793978934
0.2 0.5469616818 0.8606692272 0.6573090574 0.9980564492
0.1 0.8033280371 0.9608485139 0.8295093602 0.9808531902
0.2 0.4238361236 0.7330821942 0.5646457263 0.9389215255
Table 3. Energy eigenvalues for S, =0 and V, =0 with my=1and m, =0.1.
V,=1, S, =0. V,=0, S, =1.
d E, -E, E, -E,
0.1 0.9987864821 0.4907214371 0.9987492177 0.9987492177
0.2 0.9305722548 0.7436217716 0.9121416177 09121416177
0.1 0.9939861024 0.8138776942 0.9931754873 0.9931754873
0.2 0.9228638305 0.9446130253 0.9099188673 0.9099188673
0.1 0.9815306962 0.7642101830 0.9816196551 0.9816196551
0.2 0.8578328241 0.8991725675 0.8237839752 0.8237839752
0.1 0.9747794364 0.9068297308 0.9737974815 0.9737974815
0.2 0.8397800592 0.9558052064 0.8110066978 0.8110066978
0.1 0.9441431506 0.9011913328 0.9423428588 0.9423428588
0.2 0.6884032443 0.8705342671 0.5996427023 0.5996427023
0.1 0.9865650821 0.9304278595 0.9845795617 0.9845795617
0.2 0.8961909438 0.9968308930 0.8814237163 0.8814237163
0.1 0.9654813434 0.9629901840 0.9633202543 0.9633202543
0.2 0.8033675472 0.9521219676 0.7715990292 0.7715990292
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Table 4. Eigenvalues E,, of the relativistic Klein-Gordon equation with constant mass.
,, 5 V,=S,=2 v,=2, S, =1, Vv,=1, S, =2.
0 0.1 0.995866468 0.995866468 0.996475614
0.2 0.982824186 0.982824186 0.984881450
1 0.1 0.992499153 0.992499153 0.993782347
0.2 0.969268245 0.969268245 0.974184904
0 0.1 0.978373838 0.978373838 0.976895583
0.2 0.910805823 0.910805823 0.903633973
1 0.1 0.975350777 0.975350777 0.975371301
0.2 0.897867316 0.897867316 0.897189496
0 0.1 0.939659637 0.939659637 0.935630939
0.2 0.734690336 0.734690336 0.711036751
2 0.1 0.986828727 0.986828727 0.988499668
0.2 0.946076743 0.946076743 0.952602495
2 0.1 0.969455622 0.969455622 0.970089816
0.2 0.872287550 0.872287550 0.874197717
Table 5. Eigenvalues —E,, of the relativistic Klein-Gordon equation with constant mass.
n P V,=8,=2 v,=2, S, =1, V,=1, S, =2.
0 0.1 0.999916580 0.999916580 0.999753637
0.2 0.999556933 0.999556933 0.998717146
1 0.1 0.997795164 0.997795164 0.997308924
0.2 0.990716697 0.990716697 0.988567173
0 0.1 0.986253971 0.986253971 0.982929931
0.2 0.942664230 0.942664230 0.928113741
1 0.1 0.982596249 0.982596249 0.980048101
0.2 0.927044373 0.927044373 0.916067025
0 0.1 0.951183898 0.951183898 0.934130919
0.2 0.780977831 0.780977831 0.741210646
2 0.1 0.992969952 0.992969952 0.992301070
0.2 0.970798163 0.970798163 0.967952069
2 0.1 0.976692728 0.976692728 0.974412564
0.2 0.901361032 0.901361032 0.891589676

Table 6. Comparison of energy eigenvalues

—E,, of the Yukawa potential

with h=p=1, y =2 and &= % with other methods.

Table 7. Comparison of energy eigenvalues —E,, of the Yukawa potential
with h =21 =1, and d = 0.4 with other methods.

A l Present [34] [33]
State 8 Present [32] [33] 4 0 3.2400 3.2199 3.2400
0.002 0.24700 0.24601 0.24601 p 0 14.440 14.420 14.440
0.005 0.23802 0.24012 0.24010 1 1.6400 2.4332 2.5600
) 0.010 0.22905 0.23049 0.23040 16 0 60.840 60.819 60.840
p 0.020 0.20820 0.21192 0.21160 1 12.740 12.838 12.960
0.025 0.19632 0.20298 0.20250 0 139.24 139.22 139.24
0.050 0.14622 0.16148 0.16000 24 1 30.840 31.239 31.360
0.002 0.10867 0.10716 0.10714 2 11.040 11.246 11.560
0.005 0.10142 0.10141 0.10133
0.010 0.09427 0.09230 0.09201 -
3p 0.020 0.07796 0.07570 0.07471 5. COHCIUSIOH
e UL el e In this work, we have examined the position dependent
0.050 0.03223 003711 0.03361 mass function of the Klein-Gordon equation with unequal
0.002 0.10778 0.10715 0.10714 . . .
scalar and vector Yukawa potential by employing a suitable
0.005 0.09779 0.10136 0.10133 . . . .
approximation scheme to the centrifugal term in the
0.010 0.08783 0.09212 0.09201 . o
3d 0,020 0.06464 0107503 o0TeT framework of parametric Nikiforov-Uvarov method. The
0.025 0.05144 0.06714 0.06673 effect 'of both the sF:alar p'otentlal gnd vector potentlal.are
0.050 004331 0.03383 0.03361 numerically studied in detail. By using some transformation,

we have obtained the non-relativistic limit of the Klein-
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Gordon equation. Numerical results are computed for the
non-relativistic limit and compared with results of other
methods previously obtained. Our results are found to be in
good agreement with the previous results.

49

Appendix

Parametric constants
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