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Abstract 

In this study, the approximate analytical solutions of the relativistic Klein-Gordon equation 

in the spatial dimensions with unequal Coulomb-inverse Trigonometry scarf scalar and 

vector potentials for an effective mass function is investigated in the framework of 

supersymmetric and shape invariance method by employing a suitable approximation 

scheme to the centrifugal term. The energy equation for some special cases such as the 

Coulomb potential and inverse Trigonometry scarf potential are obtained. Using a certain 

transformation, the non-relativistic energy equation is obtained which is identical to the 

energy equation of the Hellmann potential.  
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1.  INTRODUCTION 

In the recent years, the analytical approximate methods to the relativistic wave 

equation such as Dirac equation and Klein-Gordon equation have attracted a great number 

of interest in Physics1. When a quantum system is in strong potential field, the relativistic 

effect is usually been taken into consideration which gives the correctness for the non-

relativistic quantum mechanical system2. It is well known that the solutions of these 

equations play an essential role in the relativistic regime for some physical potential model 

such as Yukawa potential3, Deng-Fan potential4 which can easily be transformed into other 

useful potential like Tietz potential and Morse potential5, 6. The relativistic effects describe a 

potential field in the presence of either Dirac equation or Klein-Gordon equation. For 

example, Klein-Gordon equation describes relativistic spin-0 particles such as pion ,    

and 0 . The Klein-Gordon equation is a relativistic version of the Schrödinger equation. It 

is the equation of motion of a quantum scalar or pseudoscalar field, a field whose quanta are 

spinless particles. A great number of studies have been devoted to obtain the analytic 

solutions of the relativistic Klein equation with the well-known potentials such as Woods-

Saxon potential7, 8, Cusp potential9, Hyperbolic Tangent potential10. It is understood that the 

exact solutions of the Klein-Gordon equation are only possible for some physical potential 

types. Thus, to obtain the solution of the Klein-Gordon equation with potentials such as 

Yukawa3, Coulomb, Frost-Musulin11, we imposed an approximation scheme as we are going 

to see later. Recently, different analytic techniques are employed to study the relativistic and 

nonrelativistic wave equations ranging from Nikiforov-Uvarov method, Factorization 

method, supersymmetric and shape invariance method to exact/proper quantization rule.  

Motivated by the interest in higher dimensional spaces, we intend to investigate the 

N-dimensional space of the Klein-Gordon equation with a combination of Coulomb potential 

and inverse Trigonometry scarf potential. The purpose of this study is to investigate the 

spatial dimensions of the Klein-Gordon equation with a combination of Coulomb potential 

and inverse Trigonometric scarf potential with unequal vector and scalar potential for an 

effective mass function. The proposed Coulomb-inverse Trigonometry scarf potential is 

given as 
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where   and B  are the potential parameters and r is the inter nuclear separation. 
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Figure 1: Coulomb inverse Trigonometric scarf potential ( ).CITP rV  

 

2.  BOUND STATE SOLUTION 

The time independent N-Dimensional Klein-Gordon equation in the natural unit 

1c     with the scalar potential ( )S r  and vector potential ( )V r  is given as12 

     
22 2

( ) ( ) ( ) ( ) ,( 0)N nr rM S V rr rE                                          (2) 

where M  is the mass of the particle, nE  is the relativistic energy and N is the spatial 

dimensions. The N-Dimensional Laplacian operator 2

N  is given as13    
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where  2

N NL   is the ground angular momentum12, and 
 2

2

N NL

r


 is a generalization of the 

centrifugal barrier for the N-Dimensional space that involves angular coordinates N  and 

the eigenvalues of the  2

N NL  9.  2

N NL   is a partial differential operator on the unit space 
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1N

s


, define analogously to a three-dimensional angular momentum14,15 as  
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 for all Cartesian component ix  of the N-

dimensional vector 1 2( , ,..........., ).Nx x x  To eliminate the first order derivative, we set the 

total wave function as  
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                                                              (4) 

then,   

    2 ( 2) .m m

N i N NL Y N Y                                                         (5) 

Hence, the Klein-Gordon equation in N-dimensional space is written in the form 
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Here, 0V  and 1V  are the strength of the vector potential while 0S and 1S are the strength of 

the scalar potential and N is spatial. For proper elucidation, we have defined the following 

relations: 2 ,   
0

1
V


 and 2

2

4



 in our proposed potential. Eq. (6) cannot be solved 

exactly ( 0) because of the presence of the centrifugal term
2

1

r
. Therefore, we have to 

adopt a suitable approximation type to the centrifugal term. It is noted that for the short-

range potential, the following formula: 
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                                                                    (9a) 

is a good approximation to 
2

1

r
. Such an approximation proposed by Greene and Aldrich16 

was to generate pseudo-Hulthén wave functions for arbitrary  states. To show the validity 

of the adopted approximation (9a), we define the following function 
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and then, show the plot of the approximation as a function of the variable r with three values 

of the potential parameter as shown in Figure 2. 

  

Figure 2: Centrifugal potential with 0.2  and 1l   

 

Now, substituting Eqs. (1),  (7), (8) and (9) into Eq. (6), we have a differential equation of 

the form 
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In this study, we have taken the mass function as 
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where 0m  and 1m  in this distribution are two arbitrary positive parameters. The mass 

function of that form enable us to check out the results in the limit of the constant mass. 

Eq. (10) can be transform to a non-linear Riccati equation where a solution can be assumed 

based on the SUSY QM considerations. The non-linear Riccati equation is written as17-22 

   2 ( )
( ) eff n

dW r
r

d
V E

r
W                                                    (13) 

whose only solution is a propose superpotential function of the supersymmertic quantum 

mechanics which by a proper search, brings the compatibility of the property of the right 

hand side of Eq. (13). In order for the superpotential to satisfy Eq. (13), we proposed a 

superpotential function as follows: 
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where 0 and 1 are two constants to be determine later. In this study, we are only concern 

with the bound state solutions that demand the wave function ( )nU r satisfying the boundary 

conditions: (0) ( ) 0.n nU U    Thus, the regularity conditions imposed a restriction 

condition that 0 0  and 1 0.   Now, putting the restriction condition into consideration 

as we solve Eq. (13), we obtain the value of the two superpotential constants as 
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Having proposed the supersymmetric superpotential function, it becomes very easy for us to 

construct a pair of supersymmetric partner potentials. First, we construct a supersymmetric 

quantum mechanical system by defining the Hamiltonians such that 
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where ( )V r is the partner potentials related to the superpotential function of the 

supersymmetric quantum mechanics by 

  2 '1
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2
V W r rWr   .                                                   (18b) 

 In terms of the superpotential ( ),W r we can now clearly express the partner potentials as 
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The Hamiltonian H possess the same eigenvalues except for the zero energy ground state. 

For good SUSY, the ground state wave function 0 ( )U r  is simply calculated from23, 24 

   0 0( ) exp ( )dU r W r rN  .                                                 (21) 

where 
0,N is the normalization constant. The partner potentials are shape invariant25, 26, that 

is ( )V r has the same functional form as ( )V r but different parameters except for the 

additive constant. Thus, the partner potentials of Eqs. (19) and (20) are shape invariants and 

hence, satisfied the shape invariance condition. It is then convenient to write the relationship 

between the partner potentials as all desired results are found27, 28 

 1 0 1( ) ( , ) ( , )a V a VR r ra                                                              (22) 

where 1a  is a new set of parameters uniquely determined from the old set 0a  via mapping 

of the form 0 1 0: ( )aF Fa a   and the residual term 1( )R a  is an independent of the 

variable r. Now, considering the invariant potentials, as 0 0   , the problem is 

simplified to a high degree of accuracy.  Eq. (22) takes a new form 
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To obtain energy equation, we consider the invariant potential ( )V r  and a relation 
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where 
2

1 .na n    Substituting the values of 
nE  and na  into Eq. (26), the energy equation 

is obtain as 
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Here, we compute the wave function via the standard function analysis method. Now, 

defining a variable of the form exp( )s r   and substitute it into Eq. (10), we have a 

second-order differential equation of the form 
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where 
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Now, let us analyze the asymptotic behavior of Eq. (28) at origin and at infinity. It can be 

tested when 0( 1)r s   and when ( 0)r s  , Eq. (29) has a solution 
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Taking the trial wave function  ( ) ( )1
b

n s f sU s s   and then substitute it into Eq. (28), 

we obtain 
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Eq. (34) is a well-known differential equation satisfied by the hypergeometric function 

whose solution is  

   2 1( ) , 2( );2 1,f s n n b sF       .                                           (35) 

Using the hypergeometric function to replace the function ( )f s , we obtain  

     2 1( ) , 2( );2 1 ,1 ,
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where nN  is a normalization factor.  

 

2.1  Special cases: 

 In this section, we considered some special cases for our potential: 

Now, let us consider the three-dimensional cases i.e. 3,N   the energy equation turns to 
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When 1 1 0,V S   the potential reduced to Coulomb scalar and Coulomb vector potentials 

with energy equation  
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Similarly, when 0 0 0,V S   the potential (7) and (8) turns to inverse Trigonometry scarf 

scalar and vector potentials with relativistic energy as 
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For a case when ( ) ( ),V r S r  0 1 ,m Mm  n nEM E   and 
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Eq. (42) is identical to the energy equation of Hellmann potential obtained by Hamzavi et 

al.29 

 

Table 1:  Energy spectrum ( )nE  for 0 1 2S V   and 1 0 1S V   with 0.25,   0 2m   

and 1 1.m   
 

         0,0E          1,0E         1,1E         2,0E          2,1E         2,2E   

0.10  1.8051898 
-2.1051540 

 1.8052651 
-2.1051215 

 1.8052651 
-2.1051215 

 1.8053600 
-2.1051422 

 1.8053600 
-2.1051422 

 1.7535522 
-2.0533194 

0.25  1.5392256 
-2.2838626 

 1.5419778 
-2.2858530  

 1.5419778 
-2.2858530  

 1.5452356 
-2.2886562 

 1.5452356 
-2.2886562 

 1.4114093 
-2.1545993 

0.50  1.2058679 
-2.6576673 

 1.2446611 
-2.6886439 

 1.2446611 
-2.6886439 

 1.2867318 
-2.7286852 

 1.2867318 
-2.7286852 

 1.0440534 
-2.4839404 

0.75  1.0887689 
-3.1565361 

 1.2309305 
-3.2871175 

 1.2309305 
-3.2871175  

 1.3978205 
-3.4482533 

 1.3978205 
-3.4482533 

 1.1699347 
-3.2127195 

1.00  1.2294598 
-3.7923208 

 1.5770673 
-4.1131367 

 1.5770673 
-4.1131367  

 1.9654386 
-4.4888356 

 1.9654386 
-4.4888356 

 1.8815857 
-4.3856899 

1.25  1.6614401 
-4.5484771 

 2.3037160 
-5.1402638 

 2.3037160 
-5.1402638  

 2.9915931 
-5.8052281 

2.9915931 
-5.8052281  

 3.1246190 
-5.8990590 

1.50  2.4117186 
-5.3977414 

 3.4205924 
-6.3266762 

 3.4205924 
-6.3266762 

 4.4714416 
-7.3426186 

 4.4714416 
-7.3426186 

 4.8687649 
-7.6706779 
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Table 2:  Energy spectrum ( )nE  for 0 1 1S V   and 1 0 2S V   with 0.25,   0 2m   

and 1 1.m   
 

         0,0E         1,0E         1,1E        2,0E        2,1E        2,2E   

0.10  1.7945878 
-1.8947434 

 1.7946023 
-1.8948379 

 1.7946023 
-1.8948379 

 1.7946580 
-1.8949486 

 1.7946580 
-1.8949486 

 1.7396464 
-1.8399496 

0.25  1.4643803 
-1.7217071 

 1.4674350 
-1.7249128 

 1.4674350 
-1.7249128 

 1.4711925 
-1.7287605 

 1.4711925 
-1.7287605 

 1.3080274 
-1.5657650 

0.50  0.8776490 
-1.4467512 

 0.9348973 
-1.5015529 

 0.9348973 
-1.5015529  

 1.0018274 
-1.5671822 

 1.0018274 
-1.5671822  

 0.5737176 
-1.1404728 

0.75  0.4355009 
-1.4282310 

 0.7273743 
-1.7072785 

 0.7273743 
-1.7072785 

 1.0158141 
-1.9893449 

 1.0158141 
-1.9893449  

 0.6090622 
-1.5876110 

1.00  0.5213244 
-2.1093296 

 1.1093297 
-2.6598297 

 1.1093297 
-2.6598297 

 1.6598268 
-3.1925824 

 1.6598268 
-3.1925824 

 1.5393131 
-3.0844589 

1.25  0.9970548 
-3.4190196 

 1.8510869 
-4.1862053 

 1.8510869 
-4.1862053 

 2.6753534 
-4.9710594 

 2.6753534 
-4.9710594  

 2.8085057 
-5.1288729 

1.50  1.6321110 
-5.2060274 

 2.7852470 
-6.1811478 

 2.7852470 
-6.1811478 

 3.9226759 
-7.2449262 

 3.9226759 
-7.2449262  

 4.3078226 
-7.6685262 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Energy eigenvalue 11 ,E 21E and 22E against the potential range with contant mass. 
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Figure 4: Energy eigenvalue 00 ,E 11E and 22E against the potential range with contant mass for 

coulomb potential 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Energy eigenvalue 00 ,E 11E and 22E against the potential range with contant mass for 

inverse Trigonometry scarf potential 
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Figure 6:  Energy eigenvalue 00 ,E 10E and 20E against N with contant mass 

 

 

3.  CONCLUSION 

In this work, we critically examined the Klein-Gordon equation with unequal scalar and 

vector potentials using supersymmetric approach. The energy of relativistic Klein-Gordon equation 

for other useful potentials are obtained by changing the numerical values of the potential parameters. 

Some numerical results are obtained as presented in Tables 1 and 2.  In Table 1, the numerical values 

obtained with 0 1 2S V   and 1 0 1S V   are greater than the energy eigenvalues obtained in 

Table 2 with 0 1 1S V   and 1 0 2S V  . In Figires 1 and 2, we presented the Coulomb inverse 

Trigonometric scarf potential and the approximation potential respectively. In Figures 3-6, we plotted 

energy of some states against the potential range for Coulomb-inverse Trigonometry scarf potential, 

Coulomb potential and inverse Trigonometry scarf potential respectively. The non-relativistic energy 

obtained is identical to the results of Hellmann potential. In Figure 4, we showed energy of some 

states against the spatial dimensions.  One of the interesting applications of this new potential is in 

many-body Physics such as Haldane-Shastry model. We hope to get other applications of this study 

in different fields of sciences as our results are not only interesting to pure theoretical physicists but 

also to the experimental physicists.  
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