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Abstract

In this study, the approximate analytical solutions of the relativistic Klein-Gordon equation
in the spatial dimensions with unequal Coulomb-inverse Trigonometry scarf scalar and
vector potentials for an effective mass function is investigated in the framework of
supersymmetric and shape invariance method by employing a suitable approximation
scheme to the centrifugal term. The energy equation for some special cases such as the
Coulomb potential and inverse Trigonometry scarf potential are obtained. Using a certain
transformation, the non-relativistic energy equation is obtained which is identical to the
energy equation of the Hellmann potential.
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1. INTRODUCTION

In the recent years, the analytical approximate methods to the relativistic wave
equation such as Dirac equation and Klein-Gordon equation have attracted a great number
of interest in Physics®. When a quantum system is in strong potential field, the relativistic
effect is usually been taken into consideration which gives the correctness for the non-
relativistic quantum mechanical system?. It is well known that the solutions of these
equations play an essential role in the relativistic regime for some physical potential model
such as Yukawa potential®, Deng-Fan potential* which can easily be transformed into other
useful potential like Tietz potential and Morse potential® ©. The relativistic effects describe a

potential field in the presence of either Dirac equation or Klein-Gordon equation. For

example, Klein-Gordon equation describes relativistic spin-0 particles such as pion 7", 7z~

and z°. The Klein-Gordon equation is a relativistic version of the Schrédinger equation. It
is the equation of motion of a quantum scalar or pseudoscalar field, a field whose quanta are
spinless particles. A great number of studies have been devoted to obtain the analytic
solutions of the relativistic Klein equation with the well-known potentials such as Woods-
Saxon potential” 8, Cusp potential®, Hyperbolic Tangent potential®. It is understood that the
exact solutions of the Klein-Gordon equation are only possible for some physical potential
types. Thus, to obtain the solution of the Klein-Gordon equation with potentials such as
Yukawa?, Coulomb, Frost-Musulin!t, we imposed an approximation scheme as we are going
to see later. Recently, different analytic techniques are employed to study the relativistic and
nonrelativistic wave equations ranging from Nikiforov-Uvarov method, Factorization
method, supersymmetric and shape invariance method to exact/proper quantization rule.
Motivated by the interest in higher dimensional spaces, we intend to investigate the
N-dimensional space of the Klein-Gordon equation with a combination of Coulomb potential
and inverse Trigonometry scarf potential. The purpose of this study is to investigate the
spatial dimensions of the Klein-Gordon equation with a combination of Coulomb potential
and inverse Trigonometric scarf potential with unequal vector and scalar potential for an
effective mass function. The proposed Coulomb-inverse Trigonometry scarf potential is
given as
~Csin®*(ar)+r°B
rsin®(ar)

Ve (1) = (1)

where o and B are the potential parameters and r is the inter nuclear separation.
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Figure 1: Coulomb inverse Trigonometric scarf potential V. (r).

2. BOUND STATE SOLUTION

The time independent N-Dimensional Klein-Gordon equation in the natural unit

¢ = u=#h=1 with the scalar potential S(r) and vector potential V (r) is given as'?
~Viw () +(M +5(n) w(r)—(E, V() w(r) =0, )
where M is the mass of the particle, E,, is the relativistic energy and N is the spatial

dimensions. The N-Dimensional Laplacian operator V7, is given as®®

0 o) Li(Qy)
V2 =i L 2 BN 3
N 8r( arj r? )

2
. oL@ -
where L3 (€, ) is the ground angular momentum?2, and -— is a generalization of the
r

centrifugal barrier for the N-Dimensional space that involves angular coordinates 2, and

the eigenvalues of the L3, (€, )°. L% () is a partial differential operator on the unit space
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N-1 - R .
S , define analogously to a three-dimensional angular momentum®* as

N

L2 (Q)= —Z(Lﬁ) where L2 = x, a%—xj 8% for all Cartesian component x, of the N-
i>] i i

dimensional vector (X;,X,,.....c.... ,Xy)- To eliminate the first order derivative, we set the

total wave function as

N-1

R, () =r2U,(r), )
then,
LY, (Qy ) =£(£+ N =2)Y," (Q)- (5)

Hence, the Klein-Gordon equation in N-dimensional space is written in the form

B -2V 8, + som) w52 DN o ()
where,
S(r):—S—rOJril_(Ss:- ®

Here, V, and V, are the strength of the vector potential while S,and S, are the strength of

the scalar potential and N is spatial. For proper elucidation, we have defined the following

relations: o =2a, V, :%and 5 = %’2 in our proposed potential. Eq. (6) cannot be solved

exactly (¢ =0) because of the presence of the centrifugal termiz. Therefore, we have to
r

adopt a suitable approximation type to the centrifugal term. It is noted that for the short-

range potential, the following formula:

1 a?
yN— 9a
r’  sinh?(ar) (%)

IS a good approximation to iz . Such an approximation proposed by Greene and Aldrich?
r

was to generate pseudo-Hulthén wave functions for arbitrary / — states. To show the validity

of the adopted approximation (9a), we define the following function
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Figure 2: Centrifugal potential with & =0.2and| =1

Now, substituting Egs. (1), (7), (8) and (9) into Eq. (6), we have a differential equation of
the form
du,,(r) -
=V B U (), (10)
where
VeV Ve 4V e
off — -or +
1-e

(1— g )2 ’

(11a)

T,

V, = OV,E,, —M, +3S,m, —5S,m, +8S,m, —V,E,, +a? (N +2/~1)(N +2¢-3),
52 V2_82
L ees)

(11b)
TR

(11c)

(9b)
and then, show the plot of the approximation as a function of the variable r with three values
of the potential parameter as shown in Figure 2.
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6% (S4S, —VgV, +2(N +2¢ —1)(N +2/ -3))

v, = > , (11d)
272 22 _
v, - SV — 528 +1soml§ 48,ms. 110

E,=E’-m+V,E &6 —S,md+(N+2/-1)(N +2/-3)5°. (12a)

ne

In this study, we have taken the mass function as

rnle—ﬁr
M=m + _ 12b
¢ 1-e (12b)

where m, and m, in this distribution are two arbitrary positive parameters. The mass

function of that form enable us to check out the results in the limit of the constant mass.
Eqg. (10) can be transform to a non-linear Riccati equation where a solution can be assumed
based on the SUSY QM considerations. The non-linear Riccati equation is written ast’-?2

(13)

whose only solution is a propose superpotential function of the supersymmertic quantum
mechanics which by a proper search, brings the compatibility of the property of the right
hand side of Eqg. (13). In order for the superpotential to satisfy Eq. (13), we proposed a
superpotential function as follows:

W(r) = p, _e‘”Ll—l (14)

where p,and p, are two constants to be determine later. In this study, we are only concern
with the bound state solutions that demand the wave function U , (r) satisfying the boundary
conditions: U, (0)=U,, () =0. Thus, the regularity conditions imposed a restriction
condition that p, >0and p, <0. Now, putting the restriction condition into consideration

as we solve Eq. (13), we obtain the value of the two superpotential constants as

4m, (S, +S
5{1i\ﬁ/02—802 +V? =87 + (N +2/-1)(N +2€—3)+28081+2V0V1+M
_ (15)
P 2
Vl Sl 2 2
Vo E, +-2 548, my—m =2 |5-5(Sym, +E, N, )+m, — g2 — (N +20~1)(N+20-3)5
4 4 (16)

Po= 2p,

Py =—E, . (17)
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Having proposed the supersymmetric superpotential function, it becomes very easy for us to
construct a pair of supersymmetric partner potentials. First, we construct a supersymmetric

guantum mechanical system by defining the Hamiltonians such that

1d?
H, =—=——+V,(r), 18a
=gt (182)

where V,(r)is the partner potentials related to the superpotential function of the

supersymmetric quantum mechanics by
V.(r) = %(Wz(r) SW (1)), (18b)

In terms of the superpotential W (r), we can now clearly express the partner potentials as

_ -or -or
V+(I‘) :WZ(r) + dW (r) — ,05 + pl(pl 2_p§0)e + pl(pl +§)ez (19)
1-e (1_6_5r)
_ —or _ —or
V7 (r) :WZ(r) _ dW(r) — pg + pl(pl zgg)e + pl(pl 5)82 . (20)
dr 1-e (1-e7)

The Hamiltonian H, possess the same eigenvalues except for the zero energy ground state.

For good SUSY, the ground state wave function U, (r) is simply calculated from? 24

U, (r)=N,, exp(—J.W(r)dr). (21)
where N, , is the normalization constant. The partner potentials are shape invariant® 2, that

IS V, (r) has the same functional form as V_(r)but different parameters except for the

additive constant. Thus, the partner potentials of Egs. (19) and (20) are shape invariants and
hence, satisfied the shape invariance condition. It is then convenient to write the relationship

between the partner potentials as all desired results are found?" 2

R(a) =V, (a,,r)-V_(a,r) (22)
where a, is a new set of parameters uniquely determined from the old set a, via mapping
of the form F:a, > a =F(a,) and the residual term R(a,) is an independent of the
variable r. Now, considering the invariant potentials, as p, = p, —¢, the problem is

simplified to a high degree of accuracy. Eq. (22) takes a new form

_ 8 + (20,0, + ) 2_ &' +(2pop+ p3) 2
R(al)_( 22, j ( 2, ) ’ “



Ebomwonyi et.al. /Sri Lankan Journal of Physics, Vol. 19, (2018) 1-15 8

2 2
R@@,) = al+2op+ )| (8 2op+A)) (24)
28 2a,
2 2
R(as)z[a22+(2p°pl+p§)} _(a§+(2pop1+pg)] ’ (25)
24, 23,
To obtain energy equation, we consider the invariant potential V_(r) and a relation
= o a2 +(2pyp, + P2) )
En,@=ZR(ak)—[ . — } , (26)
k=1 2an
where a, = p’ —on. Substituting the values of E_, and a, into Eq. (26), the energy equation
is obtain as
E2 —mZ +V,E,,6 — S,m,8 + (N +2/ —1)(N + 2/ -3)5? =

2

zvl(En, +\2)§+251[m0 -m, —ilja—z(s(somo +E,V,)+2m, —2(N+20-1)(N +20-3)87 -, + 206) 27)

2(p, +205)

Here, we compute the wave function via the standard function analysis method. Now,

defining a variable of the form s=exp(—Jr) and substitute it into Eq. (10), we have a
second-order differential equation of the form

d*U, (s)  (-s) dU,(s) Qs*+Ps+R

U (s)=0, 28
dr? s(l-s) ds s?(1-s)’ () (28)
where
4B}, +4m —45(E,V, +S,my —S,m, ) —4m, + 5% (S} -V) 2
- 452 ! ( )
. 45(E,Vy +Som, +V,E,, +S,m; —S;m )+ 2V,V, —230251 +4m, +8(E; —m§)—(52(N +20-1)(N +2£—3), (30)
45
2 _ 2 _ _
C — Ené’ M é\/o Eﬂf,’ 580 mO . (31)

52
Now, let us analyze the asymptotic behavior of Eq. (28) at origin and at infinity. It can be

tested when r—>0(s—1) and whenr—>oo(s—>0), Eg. (29) has a solution

U, (s)=s*(1- s)b where

A=

J4E§, +4mZ —45(E,V, +S,m, —S;m, ) —4m, + 67 (S7 —V?) -

45°
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and

4m, (S, +S
1+\/V02 —SZ+V,2 =S2+ (N +2/-1)(N +2/-3)+2S,S, + 2V, V, +M
b= 5 S (33)

Taking the trial wave function U, (s) =s* (1- s)b f (s) and then substitute it into Eq. (28),

we obtain

1
(2/1+1)—2(i+b+js 2
£(s)+ '(s) 2)_ |- f(s){w]:o. (34)

s(1-5) s(1-s)

Eq. (34) is a well-known differential equation satisfied by the hypergeometric function

whose solution is

f(s)=,F(-n,n+2(1+b);224+1s). (35)
Using the hypergeometric function to replace the function f (s) , we obtain

U, (5) =N,s* (1-s) ,F (-n,n+2(2+b);22 +15), (36)

where N, isanormalization factor.

2.1  Special cases:
In this section, we considered some special cases for our potential:
Now, let us consider the three-dimensional cases i.e. N =3, the energy equation turns to
EZ, —m? +V,E 6 —Sm6+/({-1)5° =
2

V, 5
] 2V1(Em +41j§+281(m0—m1—41)5—2§(Som0+ENVO)+2m1—2ﬂ(£—1)§2—(p1+2n5)2 37)

2(p, +206)

When V, =S, =0, the potential reduced to Coulomb scalar and Coulomb vector potentials

with energy equation

~25(Sym, + E, N, ) +2m, —2¢(¢=1)8% —(p, +2n5 )’ 2_ (38)

El —m; +V,E
v Mo 2(p, +2n5)

n¢

S+I(l-1)5° = —[

with

5(1i\/\/02 ~S2+(N+2/-1)(N +2£—3)+4m§150j

2

P = (39)
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Similarly, when V, =S, =0, the potential (7) and (8) turns to inverse Trigonometry scarf

scalar and vector potentials with relativistic energy as

2

zvl(Em +\2j5+2sl(m0 -m, —541]6+2m1 ~20(1-1)6*~(p, + 208)’

.- 4 (1-1)6% =~ (40)
E, -my +-Smd+/((-1)5 27, 200]
with
o 1iJvf —SZ+(N+20-1)(N +2f—3)+m
- d (41)
P = >
For a case when V(r)=S(r), my=m =M, M -E, =—-E_ and M +E,, = i—f equation
(37) becomes
AR % 2*rzn(C—B)—é((z+n+1))2—z(z+1)5 2
E, =082 |- |4 (42)
: 2m 2m 2(£+n+1)

Eq. (42) is identical to the energy equation of Hellmann potential obtained by Hamzavi et

al.?

Table 1: Energy spectrum (£E,,) for S; =V, =2 and S, =V, =1 with 6 =0.25, m, =2

and m, =1.
5 EO,O El,O El,l EZ,O E2,1 E2,2
0.10 | 1.8051898 | 1.8052651 | 1.8052651 | 1.8053600 | 1.8053600 | 1.7535522
-2.1051540 | -2.1051215 | -2.1051215 | -2.1051422 | -2.1051422 | -2.0533194
0.25 | 1.5392256 | 1.5419778 | 1.5419778 | 1.5452356 | 1.5452356 | 1.4114093
-2.2838626 | -2.2858530 | -2.2858530 | -2.2886562 | -2.2886562 | -2.1545993
0.50 | 1.2058679 | 1.2446611 | 1.2446611 | 1.2867318 | 1.2867318 | 1.0440534
-2.6576673 | -2.6886439 | -2.6886439 | -2.7286852 | -2.7286852 | -2.4839404
0.75 | 1.0887689 | 1.2309305 | 1.2309305 | 1.3978205 | 1.3978205 | 1.1699347
-3.1565361 | -3.2871175 | -3.2871175 | -3.4482533 | -3.4482533 | -3.2127195
1.00 | 1.2294598 | 1.5770673 | 1.5770673 | 1.9654386 | 1.9654386 | 1.8815857
-3.7923208 | -4.1131367 | -4.1131367 | -4.4888356 | -4.4888356 | -4.3856899
1.25| 1.6614401 | 2.3037160 | 2.3037160 | 2.9915931 | 2.9915931 3.1246190
-4.5484771 | -5.1402638 | -5.1402638 | -5.8052281 | -5.8052281 | -5.8990590
1.50 | 2.4117186 | 3.4205924 | 3.4205924 | 4.4714416 | 4.4714416 | 4.8687649
-5.3977414 | -6.3266762 | -6.3266762 | -7.3426186 | -7.3426186 | -7.6706779
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Table 2: Energy spectrum (£E,,) for S; =V, =1and S, =V, =2 with 6 =0.25, m; =2

and m, =1.
5 EO,O E1,0 El,l EZ,O E2,1 E2,2
0.10 | 1.7945878 | 1.7946023 | 1.7946023 | 1.7946580 | 1.7946580 | 1.7396464
-1.8947434 | -1.8948379 | -1.8948379 | -1.8949486 | -1.8949486 | -1.8399496
0.25 | 1.4643803 | 1.4674350 | 1.4674350 | 1.4711925 | 1.4711925 | 1.3080274
-1.7217071 | -1.7249128 | -1.7249128 | -1.7287605 | -1.7287605 | -1.5657650
0.50 | 0.8776490 | 0.9348973 | 0.9348973 | 1.0018274 | 1.0018274 | 0.5737176
-1.4467512 | -1.5015529 | -1.5015529 | -1.5671822 | -1.5671822 | -1.1404728
0.75 | 0.4355009 | 0.7273743 | 0.7273743 | 1.0158141 | 1.0158141 | 0.6090622
-1.4282310 | -1.7072785 | -1.7072785 | -1.9893449 | -1.9893449 | -1.5876110
1.00 | 0.5213244 | 1.1093297 | 1.1093297 | 1.6598268 | 1.6598268 | 1.5393131
-2.1093296 | -2.6598297 | -2.6598297 | -3.1925824 | -3.1925824 | -3.0844589
1.25 | 0.9970548 | 1.8510869 | 1.8510869 | 2.6753534 | 2.6753534 | 2.8085057
-3.4190196 | -4.1862053 | -4.1862053 | -4.9710594 | -4.9710594 | -5.1288729
1.50 | 1.6321110 | 2.7852470 | 2.7852470 | 3.9226759 | 3.9226759 | 4.3078226
-5.2060274 | -6.1811478 | -6.1811478 | -7.2449262 | -7.2449262 | -7.6685262
4
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2.5
&
o 2
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1.5
1
0.5
0
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

potential range

E11 E21
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Figure 3: Energy eigenvalue E,;, E, and E,, against the potential range with contant mass.
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Figure 4: Energy eigenvalue E,,, E;;and E,, against the potential range with contant mass for

coulomb potential

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6
)

——EO00 —@—El1l —@—E22

Figure 5: Energy eigenvalue E,,, E;and E,,against the potential range with contant mass for

inverse Trigonometry scarf potential
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Figure 6: Energy eigenvalue E,,, E,,and E,;against N with contant mass

3. CONCLUSION

In this work, we critically examined the Klein-Gordon equation with unequal scalar and
vector potentials using supersymmetric approach. The energy of relativistic Klein-Gordon equation
for other useful potentials are obtained by changing the numerical values of the potential parameters.

Some numerical results are obtained as presented in Tables 1 and 2. In Table 1, the numerical values

obtained with S; =V, =2 and S, =V, =1 are greater than the energy eigenvalues obtained in

Table 2 with S; =V, =1 and S, =V, = 2. In Figires 1 and 2, we presented the Coulomb inverse

Trigonometric scarf potential and the approximation potential respectively. In Figures 3-6, we plotted
energy of some states against the potential range for Coulomb-inverse Trigonometry scarf potential,
Coulomb potential and inverse Trigonometry scarf potential respectively. The non-relativistic energy
obtained is identical to the results of Hellmann potential. In Figure 4, we showed energy of some
states against the spatial dimensions. One of the interesting applications of this new potential is in
many-body Physics such as Haldane-Shastry model. We hope to get other applications of this study
in different fields of sciences as our results are not only interesting to pure theoretical physicists but

also to the experimental physicists.



Ebomwonyi et.al. /Sri Lankan Journal of Physics, Vol. 19, (2018) 1-15 14

REFERENCES

1.

10.

11.

12.

13.

14.
15.

O. Bayrak, A. Soylu and I. Boztosun, The relativistic treatment of spin-0 particles under the
rotating Morse oscillator. J. Math. Phys. 51 (2010) 112301.
DOI: http://DOI.org/10.1063/1.3503413

R.C. Wang and C.Y. Wong, Finite-size effect in the Schwinger particle-production
mechanism. Phys. Rev. D 38 (1988) 348. DOI: http://DOI.org/10.1103/physRevD.38.348

H. Yukawa, On the interaction of Elementary particles. Proc. Phys. Math. Soc. Japan 17
(1935) 48. DOI: http://DOI.org/10.11429/ppmsj1919.17.0_48

Z.H. Deng and Y.P. Fan, A potential function of diatomic molecules. Shandong Univ. J. 7
(1957) 162.

L.H. Zhang, X.P. Li and C.S. Jia, Approximze solutions of the Schrédinger equation with
generalized Morse potential model including the centrifugal term. Int. J. Quant. Chem. 111
(2011) 1870. DOI: http://DOI.org/10.1002/qua.22477

C.A. Onate and J.A.O. Idiodi, Thermodynamic properties and analytic solutions of the
relativistic Dirac equation for a particle under the improved Tietz molecular diatomic
function. JTPC 10 (2015).

C. Rojas and V.M. Villalba, Scattering of Klein-Gordon particle by a Woods-Saxon
potential. Phys. Rev. A. 71 (2005) 052101.
DOI: http://DOI.org/10.1103/PhyRev.A.71.052101

O. Bayrak and D. Sahin, Exact analytical solutions of the Klein-Gordon equation in the
generalized Woods-Saxon potential. Commun. Theor. Phys. 64 (2015) 259.
DOI: http://DOI.org/10.1088/0253-6102/64/3/259

V.M. Villalba and C. Rojas, Scattering of a relativistic scalar particle by a Cusp potential.
Phys. Lett. A. 362 (2007) 21-25. DOI: http://DOIl.org/10.1139/j.physleta.2006.09.089

C. Rojas, Scattering of a scalar relativistic particle by the hyperbolic tangent potential. Can.
J. Phys. 93 (2015) 85-88. DOI: http://DOIl.org/10.1139/cjp-2014

A. Frost and B.Musulin, Semiempirical potential energy functions. I. The H2 and
H2+diatomic molecules. J. Chem. Phys. 22 (1954) 1017.
DOI: http://DOI.org/10.1063/1.1746254

T.T. Ibrahim, K.J. Oyewumi and M. Wyngaardt, Analytical solution of N-dimensional Klein-
Gordon and Dirac equations with Rosen-Morse potential. Eur. Phys. J. Plus 127 (2012) 100.
DOI: http://DOIl.org/10.1140/epjp/i2012-12100-5

H. Hassanabadi, S. Zarrinkamar and H. Rahimov, Approximate solutions of D-Dimensional
Klein-Gordon equation with Hulthén-type potential via SUSYQM. Commun. Theor. Phys. 56
(2011) 423. DOI: http://DOI.org/10.1088/0253-6102/56/3/05

Avery, J.; Hyper spherical Hamonics; Application in Quantum Theory, Dordrecht Kluwer

Oyewumi, K. J. and Bangudu, E. A. Isotropic harmonic oscillator plus inverse quadratic
potential in N-dimensional space. Arab. J. Scien. Engr. 28 (2003) 173.


http://doi.org/10.1063/1.3503413
http://doi.org/10.1103/physRevD.38.348
http://doi.org/10.11429/ppmsj1919.17.0_48
http://doi.org/10.1002/qua.22477
http://doi.org/10.1103/PhyRev.A.71.052101
http://doi.org/10.1088/0253-6102/64/3/259
http://doi.org/10.1139/j.physleta.2006.09.089
http://doi.org/10.1139/cjp-2014
http://doi.org/10.1063/1.1746254
http://doi.org/10.1140/epjp/i2012-12100-5
http://doi.org/10.1088/0253-6102/56/3/05

Ebomwonyi et.al. /Sri Lankan Journal of Physics, Vol. 19, (2018) 1-15 15

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Greene, R.L. and Aldrich, C. Variationl wave functions for a screened Coulomb potential.
Phys. Rev. A 14 (1976) 2363. DOI: http://DOI.org/10.1103/phyRevA.14.2363

Wei, G. F. and Dong, S. H. Approximate analytical solutions of the Manning-Rosen potential
with the spin-orbit coupling term and spin symmetry by Nikiforov-Uvarov method Phys. Lett.
B 686 (2010) 288. DOI: http://DOI.org/10.1016/j.physleta.2008.10.064

Hassanabadi, H., Maghsoodi, E. an Zarrinkamar, S. Relativistic symmetries of Dirac
equation and the Tietz potential. Eur. Phys. J. Plus. 127 (2012) 31.
DOI: http://DOIl.org/10.1140/epjp/i2012-12031-1

S. Zarrinkamar, A.A. Rajabi and H. Hassanabadi, Dirac equation for the harmonic scalar
and vector potentials and a linear Coulomb-like tensor potential, the SUSY approach. Ann.
Phys. 325 (2010) 2522.

S. Zarrinkamar, H. Hassanabadi and A.A. Rajabi, Dirac equation for a Coulomb scalar,
vector and tensor interaction. Int. J. Mod. Phys. A. 26 (2011) 1011.
DOI: http://DOI.org/10.1142/S02177X11051287

H. Hassanabadi, B.H Yazarloo and L.L. Lu, Approximate analytical solutions to the
Generalized Poschl-Telller potential in D-dimensions. Chin. Phys. Lett. 29 (2012) 020303.
DOI: http://DOI.org/10.1088/0256-307X/29/2/020303

C.A. Onate, K.J. Oyewumi and B.J. Falaye, Approximation Solutions of the Schréodinger
equation with the hyperbolical potential: Supersymmetric approach. Few-Body Syst. 55
(2014) 61-67. DOI; http://DOI.0rg/10.1007/s00601-013-0731-0

G.F. Wei and S.H. Dong, Algebraic approach to pseudospin symmetry for the Dirac
equation with scalar and vector modified Poschl-Teller potentials. EPL 87 (2009) 40004.
DOI: http://DOI.org/10.1209/0295-5075/87/40004

K.J. Oyewumi and C.O. Akoshile, Bound state solutions of the Dirac-Rosen-Morse
potential with spin and pseudospin symmetry. Eur. Phys. J. A 45 (2010) 311.
DOI: http://DOl.org/10.1140/epja/i2010-11007-0

C.A. Onate and J.O. Ojonubah, Eigensolutions of the Schrodinger equation with a class of
Yukawa potentials via supersymmetric approach. J. Theor. Appl. Phys. 10 (2016) 21.
DOI: http://DOI.org/10.1007/s40094-015-0196-2

A.N. lkot, S.E. Etuk, B.H. Yazarloo, S. Zarrinkamar and Hassanabadi, H. Dirac-Hulthen
problem with Coulomb-like Hulthen tensor interaction via SUSY. Few-Body Syst. 56 (2015)
41. DOI: http://DOl.org/10.1007/s00601-014-0927-y

G.F. Wei and S.H. Dong, A novel algebraic approach to spin symmetry for Dirac equation
with scalar and vector Second Poschl-Teller potential. Eur. Phys. J. A 43 (2010) 185.
DOI: http://DOIl.org/10.1140/epja/i2009-10901-8

C.A. Onate, K.J. Oyewumi and B.J. Falaye, An approximate solutions of the Dirac equation
for Second Poschl-Teller like scalar and vector potentials with a Coulomb tensor
interaction. Afr. Rev. Phys. 8 (2013) 0020.

M. Hamzavi, K.E. Thylwe and A.A. Rajabi, Approximate bound state solutions of the
Hellmann potential. Commun. Theor. Phys. 60 (2013) 1.


http://doi.org/10.1103/phyRevA.14.2363
http://doi.org/10.1016/j.physleta.2008.10.064
http://doi.org/10.1140/epjp/i2012-12031-1
http://doi.org/10.1142/S02177X11051287
http://doi.org/10.1088/0256-307X/29/2/020303
http://doi.org/10.1007/s00601-013-0731-0
http://doi.org/10.1209/0295-5075/87/40004
http://doi.org/10.1140/epja/i2010-11007-0
http://doi.org/10.1007/s40094-015-0196-2
http://doi.org/10.1007/s00601-014-0927-y
http://doi.org/10.1140/epja/i2009-10901-8

