Analytical solutions of the Dirac equation under Hellmann–Frost–Musulin potential

C.A. Onaté,∗, M.C. Onyeaju, A.N. Ikot

aPhysics Department, University of Benin, Nigeria
bTheoretical Physics Group, Physics Department, University of Port Harcourt, Nigeria

Abstract

The approximate analytical solutions of the Dirac equation with Hellmann–Frost–Musulin potential have been studied by using the generalized parametric Nikiforov–Uvarov (NU) method for arbitrary spin–orbit quantum number \(k \) under the spin and pseudospin symmetries. The Hellmann–Frost–Musulin potential is a superposition potential that consists of Yukawa potential, Coulomb potential, and Frost–Musulin potential. As a particular case, we found the energy levels of the non-relativistic limit of the spin symmetry. The energy equation of Yukawa potential, Coulomb potential, Hellmann potential and Frost–Musulin potential are obtained. Energy values are generated for some diatomic molecules.

http://dx.doi.org/10.1016/j.aop.2016.10.006

Available at: www.sciencedirect.com.