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ABSTRACT

This paper considers linear quadratic optimal control from the perspective of a matrix inverse eigenvalue problem.
The approach employed uses a Newton’s method for solving the Inverse Eigenvalue problem for a class of
Hermitian/Hamiltonian matrices in the neighborhood of a related singular matrix of rank 1.A few numerical examples
are presented to illustrate the result.
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INTRODUCTION

Recent theoretical results on the solvability of the inverse eigenvalue problem for Hermitian matrices together with
numerical examples are systematically reviewed and discussed in respect of the inverse eigenvalue problems for certain
singular and non-singular Hermitian matrices. See Oduro et al (2012) and Oduro (2012a, b) as well as Baah Gyamfi
(2012).

This paper deals with methods of solving the inverse eigenvalue problem for certain matrices namely singular
symmetric matrices of rank 1 via Newton’s method for solving the inverse eigenvalue problem for non-singular

symmetric matrices trying to determine how to drive a system from some initial state to a target final state by finding a
set of parameters which gives a right solution. It is clear therefore that every control problem is an inverse problem.

Linear Quadratic Optimal Control Problem (LQOCP)
Here we consider a linear system of the form:
X=AXx+Bu X, =X, (1)

Where: U is the admissible control unit and be of the form: u = ¢(t)

The control objective is to find a control strategy that minimizes the cost functional.

I ) = [ [XT(Qx(W) + 47 QR ot @

Where:
Q is a symmetric positive semi definite matrix.

R is a symmetric positive definite matrix.

Then, this type of control problem is called Linear Quadratic Control Problem

Since Q is positive semi definite, then, X" (t)QX(t) > 0and R is positive definite
ie.d ()R@(t) >0 unless g(t) =0.
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Theorem: Riccati Assume (A, B) is stabilizable and (\/6, A) is detectable. Then, there exists a unique solution P

in the class of positive semi definite matrices and the closed loop system matrix A— BR BT P is stable.

Proof: If (A, B) is stabilizable and (\/6, A) is detectable, then the equation will be an admissible as it is stabilizing,
we then verify that it is optimal by completing the square.

For any admissible U.

3(%,U) = [ [X QM) +uT ORu(®) ]dt
= J, [X' (OPBRBTPx(t) +u" (ORu() - X" (O)(A"P+ PA)X(H) ]t @
= ["Juy+R*BTPx®] R[u(®) + R*BTPx(t) it

= —I: [uT ()BT Px(t) + x' (t)PBu(t) + x" (t) APX(t) + X" (t) PAx(t)}jt

[ lu®+r*BTPx®] Rlu® +R*BTPx(®)]- X (OPX(D — X (O XDt

=%, Px, + [ [(u() + R*B"Px()] R[(u(®) + R BT Px(t) it (4
Since X,PX, is constantand U = —R*BT Px is admissible with R > 0,
Then, the optimal control will be: u(t) = —R*B" Px(t) 5)
While the optimal cost is: V (X) = X' PX (6)
Linear System and the Riccati Equation

Welet Ae R™ BeR"™ QeR™:Q=Q" 20 and Re R™™ :R=R" >0

Finding the linear quadratic optimal control for the functional;

Ix, (u) = L ‘ %[X(t)T Qx(t) +u(t)’ Ru(t)]dt ©)
Subject to differential equation

X (t) = Ax(t) + Bu(t). t € [t,.t, | x(t,) = ®)
Then the Hamiltonian functional is given by:

H(p,x,u,t):%[XTQx+uTRu]+ p' [Ax+ Bu] )

From the above theorem, it then follows that any optimal inputU, and the corresponding State X, Satisfies:
oH
——(p. (®), x.(t),u.(t),t) =0
ou
=u,(t)'R+p,(t)'B=0 (10)
Thus, u, (t) = —R™B" p, (t) and the adjoint equation is given as:
oH T
[g(p.(t),k.(t),u.(t),t)} ——p.teltt ) pt)=0
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= (x. " Q+p.) A =—p.@)telt.t,]p.(t;)=0

Then,

p.(0)=ATp.()-Qx .t et t ] p.(t,)=0 )
Consequently;

d|x.(t)] | A —BR™BT | x.(t) ~ ~

a{p,(t)}_{—Q AT j||:p.(t)}te[ti’tf]1xo(ti)_Xi’p.(tf)_o (12)

Equation (12) is a linear, time variant differential equation in (X,, p,) which is called Hamilton’s Equation.

From equation (12), we consider the case where the Hamiltonian matrix

_ 1T
H - A BR™B
-Q —AT

} is 2nx 2N so that A, Q, BR™'B  are all is 2 x 2 sub-matrices of H.

Using appropriate row dependence relations, a 4 x4 singular Hermitian matrix representing H above can be
constructed as follows

8y 8p &3 dy 1 Ky 7k2 k37
2
Ay Ay Ay Ay —3a kl |k1| kl kz kl k3
11 - -
2
Ay dp A Ay k, k,k, |k2| K, K,
dy QA Ay Ay h h 2
_k3 ks k1 ks kz |k3| |

Here we assume that the singularity of the matrix is due to the row dependence relations specified below:

Ri+1 = ki Rl

= a, = k1a11 =-q, = kl;aSl = k1a11 =—a;3 = I(2;a41 = I(16'-11 =-ay = ks

a5 = k2a11(_k1a12) = kz Ks; a, = k3a11(_klaiz) = k3 Ks; Q3 = k3a11(_kza12) = k3 K2

=a, = k1 (alz) = k1 (a21) = k123-11 = |k1|2 Ay = kl (a13) = kl(a3l) = k1k2all =k kz

Ay = k1 (314) = k1 (a41) = k1k3all = k1k3 Ag = kz (a13) = kz (a3l) = k22a11 = |k2|2
Ay = kz (a14) = kz (a41) = kzksan = kz Ks Ay = k3 (314) = ks (a41) = k32a11 = |k3|2

To solve the inverse eigenvalue problem (IEP) for the singular matrix of rank 1 we use the given nonzero eigenvalue as
follows

tr(A) =4 =ay, (L+[k,|" +]k,|" +kq|*)
So that

1k ok, Kk

A 1 |k1|2 k1k2 k1k3

k
D1k o R [k, K, K k,* K, kK,
k

3 k3k1 kskz |k3
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Since we have assumed that the above is also a Hamiltonian matrix of the linear quadratic optimal control problem, we
may partition it as follows:

1k ok, k
ko )T Kk, koK {A —BRlBT}
o Kok k) kke| LQ —A
K koky Kok, ks |

Where
R and Q are Hermitian symmetric matrices and A=—A"

Thus we have

ke =k, K,

Ky = Ky K2 eooercerereeeeee (i)
k, =k,k, =k, =Kz k;

Substituting for K, in equation (i)

k2=\/—71:>k2— L (i)
But,

k, =K2 k, =k, =—(i)k,

Ky =Ky oo (iv)

Substituting K, K, , K into the Hamiltonian matrix gives;

1 ki ik
k) ik, il
i ik, 1 -k
ik k" =k k]

Thus; tr(A)=?t=2all(1+|k1|2)

Thus the solution of the IEP is given by

1k, i -k,
Ak k) ik, ik
H = 1 1 ) 1 A
2+ k[ Sk, 1 -k

ik i =kl

© 2014, 1IMA. All Rights Reserved 309



Oladejo, N.K #l , Oduro, ET and Amponsah, S. 'y / An Inverse Eigen value Problem for Optimal Linear Quadratic Control /
IUMA- 5(4), April-2014.

ILLUSTRATION

Giventhat a,, =1k, =2=1=10

Hence;
1 ki —ik, 122 0 2
K, |k1|2 ik, - i|k|2 |2 4 2 -4

-2 1 2

i —ik 1 -k
; 2 2i 4 -2 4

ik ik —k |k1|2J

SOLUTION OF THE IEP FOR NONSINGULAR HAMILTONIAN MATRIX

Since there are repeating diagonal elements we solve the IEP by Newton’s method for two distinct target
eigenvalues A, 4, which therefore give rise to two (2) functions with independent variables being the diagonal
elements of matrix A which is a sub-matrix of H:

f(ay,a,)= A —2(trA)A, +detH

f,(a,,8,)= A,~ —2(trA)A, +detH

Thus;
fl(all1 ay, ): 2'12 - 2(8.11 + 3y )ﬂ’l +detH

fz (an 18y ) = /122 - 2(‘3111 +a, )12 +detH

Then the Jacobian of the above functions is given as:
of,  of,
oa, day, N [— A+2a, -4+ Zaﬂ
of, o, A, +2a,, —A,+2a,
o0a,, O0a,

J:

While the general Newton’s method is given by the following iteration;

X (1) — () _J—l(x(o))i(x(n))

(0
X (0) — |: all :|
(0)
a‘22

While the Determinant Det = 2(1, — 4, Na,, —a,,)

Then the formula for finding inverse of 2 x 2 Jacobian matrix is given as;

-1 _ 1 {Zazz - /11 28-11 - 2’1:|
2(/11 - /12 )(azz - a11) 2a22 - /12 2a11 - /12

ALGORITHM

To solve the inverse eigenvalue problem (IEP) for the Hamiltonian equation associated with the LQOC problem:

Ix; (u) = [ ‘ %[x(t)T Qx(t) +u(t)” Ru(t) jot
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Subject to differential equation

X (t) = Ax(t) + Bu(t). t e [t,.t, | x(t,) =

Given the Hamiltonian equation of the form:

i{x,(t)}:[ A -BR'B’

di| p.)] |-Q -AT

Solving the IEP for the matrix; H z[

For the case when it is Non-Singular matrix:
Given two distinct target eigenvalues A,, A, (repeated for each)

Step 1: Determine the characteristic functions i.e.

fi(ay,a,) = 112 —2(trA)4, +detH
f,(a,,a,)=4,"—2(trA)4, +detH

Step 2: Find the Jacobian from the function where:

of,  of

=, o,

o0a,, O0a,

Step 3: Apply the Newton’s method in H .i.e.

X(l) — X(O) _Jfl(x(o))i(x(o))

(0)
8y

Step 4: Substitute X © ={ o
a (0)
22

NUMERICAL EXAMPLES
|. Positive Definite Case

Given the target eigenvalues
A =L1,=2

And an initial rank 1 singular matrix with

a, =1k =2=1=10

ie.
1 2 i 2i
-2 4 -2 4
= . )
(1 1 2

2t 4 -2 4

© 2014, 1IMA. All Rights Reserved
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- A, +2a;,

oa,, oOa,, N [_ Ay + 28,
- A, +2a,

-4, +2a,,

} into H replacing the original diagonal element.

311



Oladejo, N.K #l , Oduro, ET and Amponsah, S. 'y / An Inverse Eigen value Problem for Optimal Linear Quadratic Control /
IUMA- 5(4), April-2014.

To solve the IEP by Newton’s method using the above as initial matrix, we proceed as follows

fl (allv ay, ): /112 - 2(3-11 +3ay )]“1 +0
—1-10(1) +0 = -9
fz(an’azz): }“22 - 2(an + 3, )’12 +0

= 4-10(-2)+0=24

f(X©@)= Eﬂ

of, of,

- da, Oa,, - - A +2a,, -4 +2a; _ -1+8 -1+2 _ 7 1
of, o, A, +2a, —-A,+2a,| | 2+8 2+2| |10 4
da,, o0a,,

Jl= 1 [2&22—21 2311_&.}= 1 |:8—1 2—1}
2(%_12)(3-22_%1) 2a,-4, 2a,-4] 2Q3()|8+2 2+2

A7 1
18[10 4

Substituting into the Newton’s equation

X(ﬂ+l) — X(n) _Jfl(x(o))i(x(ﬂ))

e {12l M

Hence,
(X(l)): 3.167
3.667
Thus the solution of IEP is given by
3.167 2 i 2i
H - -2 3667 -2i 4i
i —2i 3167 2
2i 4i -2 3.667

Hence, the matrices is positive definite.
li. Negative Definite Case

Given the target eigenvalues
AL=-11,=-2

And an initial rank 1 singular matrix with
a, =1k, =2=1=10
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1 2 i 21
-2 4 =2i 4
= . ]
I =2 1 2
2i 4i -2

To solve the IEP by Newton’s method using the above as initial matrix, we proceed as follows
2
fy (all' Az ): A= 2(an +ay )}“1 +0
=1-10(-1)+0=11

fz(alpazz): }“22 - 2(3-11 +ay )12 +0

=4-10(-2)+0=24

F(X@)= Fl}

24
of, o

g_|0ay day | _ —A 28, —A+2a,| [1+8 1+2] [9 3
o, d, ~A,+2a,, —A,+2a,| |2+8 2+2| |10 4
oa,, oOa,,

3 1 [2a22—31 2a11—/11}= 1 {8+1 2+1}
2(/11—12)(a22—aﬂ) 2a,, -4, 2a,-4,] 2(3)(3)|8+2 2+2

ja_if9 3
18|10 4

Substituting into the Newton’s equation

X(n+l) — X(ﬂ) _Jfl(x(o))i(x(ﬂ))

X(l)_l_iQ 3][12] [1] [ 15
14| 18|10 4|[24]| |4]| |0.777
Hence,

on | 05
(X ){—3.223}

Thus the solution of IEP is given by

-05 2 [ 2i
H - -2 -3223 -2i 4
i -2i  -05 2

2i 4i -2 -3.223

Hence, the matrix is Negative definite.
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CONCLUSION

The usual approach to the LQOC problem has been reviewed. Recent theoretical results have also been systematically
reviewed and discussed in respect of the inverse eigenvalue problem (IEP) for certain singular and non-singular
Hermitian matrices. Based on these results, we have successfully developed a general form of the LQOC problem as an
inverse eigenvalue problem involving a Hermitian Hamiltonian matrix and justified the claims by numerical examples
for real distinct target eigenvalues.

ACKNOWLEDGMENT

We thank Prof. Adetunde, I.A. for fruitful discussions, his criticism, and suggestion and for providing further
references. He sees through the publication of this article.

REFERENCES

1. Bhattacharyya S P. (1991) Linear control theory; structure, robustness and optimization Journal of control
system, robotics and automation. CRS Press Vol IX. San Antonio Texas.

2. Boley D and Golub.G.H (1987).A survey of matrix inverse eigenvalue problem. Inverse Problems.Vol,3 pp
595-622,

3. Cai, Y.F. Kuo, Y.C Lin W.W and Xu, S.F (2009) Solutions to a quadratic inverse eigenvalue problem, Linear
Algebra and its Applications. Vol. 430 pp. 1590-1606.

4. Datta B.N and Sarkissian, D.R (2004) Theory and computations of some Inverse Eigenvalue Problems for the
quadratic pencil. Journal of Contemporary Mathematics, VVol.280 221-240.

5. Miranda.J.0.A.O. Optimal Linear Quadratic Control. Control system, Robotics and Automation. Vol. VIII
INESC.JD/IST, R. Alves, Redol 9.1000-029.Lisboa, Portugal

6. Oduro F.T., AYY. Aidoo, K.B. Gyamfi, J. and Ackora-Prah, (2012) Solvability of the Inverse Eigenvalue
Problem for Dense Symmetric Matrices™ Advances in Pure Mathematics, Vol. 3, pp 14- 19,

7. Ram Y.M and El-Golhary (1996). ‘An inverse eigenvalue problem for the symmetric tridiagonal quadratic
pencil with application of damped oscillatory systems’ SIAM J. Applied Math., Vol. 56; pg. 232-244.

8. Woyss S J, Liu, H. and Yin, G.G (2012) Generalized eigenvalue problem algorithms and software for algebraic
Riccati equations. Proc. IEEE, 72(12):1746-1754.

9. Yuambei et al., (2004),” On inverse quadratic eigenvalue problems with partially prescribed eigenstructure’
SIAM J. Matrix Analysis and Application, VVol.25 pp 995-1020.

Source of support: Nil, Conflict of interest: None Declared

© 2014, 1IMA. All Rights Reserved 314



	ABSTRACT

