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Abstract 

We present some methods based on a non-polynomial spline function 
for the numerical solution of a certain class of singular two-point 
boundary value problems. The methods involve a modification of the 
singular boundary value problem considered at the singular point.    
The methods are tested on some examples and the numerical results 
are compared with the exact solutions and some other methods in 
literatures. 

1. Introduction 

Consider the singular two-point boundary value problem of the form: 
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( ) ( ) ( ) ( ) ( ) ,10, ≤≤=+′+′′ xxcxuxbxux
kxu  (1) 

( ) ( ) ,1,00 β==′ uu  (2) 

where 1≥k  and β  is a constant. 

These problems occur in the study of generalized axially symmetric 
potentials after separation of variables. Such problems also arise frequently 
in areas such as thermal explosion, electrohydrodynamics, chemical reactions 
and, atomic and nuclear physics [5-7]. Singular boundary value problems 
have been studied by several authors. Jamet [9] discussed the existence and 
uniqueness of solutions and presented a finite difference method for solving 
such problems. Erikson and Thomee [8] described Galerkin methods for this 
class of singular boundary value problems. Bickley [10] studied the use of 
cubic spline for solving linear two-point boundary value problems. Taiwo 
and Ogunlaran in [11, 13] considered solving fourth-order boundary value 
problems by polynomial and non-polynomial spline methods, respectively. 
Kanth and Reddy [1, 3] described a fourth-order finite difference method and 
a cubic approximation method, respectively, for this class of singular 
boundary value problem. Caglar and Caglar [2] presented a B-spline method 
for solving a system of differential equations, while Goh et al. [12] presented 
an extended uniform B-spline method of third degree for solving singular 
boundary value problem. 

The series expansion procedure is the common technique for removing 
the singularity. Kanth and Reddy [4] used the Chebyshev economization near 
the singularity on ( )δ,0  and solved the regular boundary value problem in 

the interval ( )1,δ  by using a central difference method. 

In this paper, we describe non-polynomial spline methods for solving     
a class of singular two-point boundary value problems. The original 
differential equation is modified at the singular point by the application of 
the L’Hopital rule. Examples of both homogeneous and non-homogeneous 
singular boundary value problems are solved to demonstrate the efficiency 
and accuracy of the methods. 
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2. Description of the Methods 

As a result of singularity at ,0=x  the differential equation (1) is 
modified at the singular point in order to remove the singularity by applying 
L’Hopital rule. Hence, the boundary value problem (1) with (2) transforms to 

( ) ( ) ( ) ( ) ( ) ( ),xrxuxqxuxpxu =+′+′′  (3) 

( ) ,00 =′u  (4) 

( ) ,1 β=u  (5) 

where 
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We now partition the interval [ ]1,0  using equally spaced knots ,ihxi =  

,...,,2,1,0 ni =  where nh 1
=  and n is an arbitrary positive integer. Let iu  

be an approximation to ( ),ixu  obtained by the segment ( )xS  of the spline 

function passing through the points ( )ii ux ,  and ( ),, 11 ++ ii ux  where ( )xS  is 

as defined in Taiwo and Ogunlaran [13]. 

Following Taiwo and Ogunlaran [13], one sided limits of derivative of 
( )xS  are 

( ) ( ) niMhMhuuhxS iiiii ...,,2,1,1
11 =α+β+−=′ −−

−  (6) 
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and 

( ) ( ) .1...,,2,1,0,1
11 −=β+α+−=′ ++

+ niMhMhuuhxS iiiii  (7) 

Substituting (6) and (7) in the differential equation (3) and rearranging, we 
obtain 

( ) ( ) ,1
22

1 iiiiiiiii hrMphMphhupphq =α−β−++− ++  

1...,,1,0 −= ni  (8) 

and 

( ) ( ) ,2
1

2
1 iiiiiiiiii hrMphhMphuphqup =β++α+++− −−  

....,,2,1 ni =  (9) 

From the boundary conditions (2) and (3), we obtain, respectively, 

011
1001 =α−β−− hMhMuhuh  (10) 

and 
.Bun =  (11) 

Equations (8)-(11) constitute ( )12 +n  equations and therefore can be solved 

for the unknowns ( )....,,1,0, niMu ii =  

3. Truncation Error 

The local truncation error of (8) is given by 

( ) ( )[ ] ( ) ( ) ( ) [ ( )] ( )iiiiiiii xuxphhxuxpxuxpxhqT ′′β−++−= +
2

1  

( ) ( ) ( ).1
2

iii xhrxuxph −′′α− +  (12) 

Expanding in Taylor’s series about ,ix  we obtain 

( ) ( ) ( ) ( ) ( )iiiii xuxphxuxphT ′′′⎥⎦
⎤

⎢⎣
⎡ α−+′′⎥⎦

⎤
⎢⎣
⎡ β+α−= 6

1
2
1 32  
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( ) ( )i
iv

i xuxph ⎥⎦
⎤

⎢⎣
⎡ α−+ 224

14  

( ) ( ) ( ) .1...,,1,0,6120
1 65 −=+⎥⎦

⎤
⎢⎣
⎡ α−+ nihOxuxph i

v
i  (13) 

The same result is obtained by using (9). Thus, the schemes (8)-(11) produce 
a family of second-order methods for arbitrary choice of α and β provided 

that .2
1=β+α  We consider the cases 141,121,101,81,61,41=α  

and .161  

4. Numerical Experiments 

In this section, we have applied the new methods presented in this   paper 
to solve three singular boundary value problems, both homogeneous and 
non-homogeneous, in order to demonstrate the applicability and the 
comparative performance of the methods. 

Problem 1. Consider the linear singular boundary value problem 

( ) ( ) ( ) ( ) 7212 242 +−=−+′−′′− xxxuxxuxxu  

together with the boundary conditions 

( ) ( ) .01,00 ==′ uu  

The exact solution is 

( ) .1 2xxu −=  

Each of the methods approximates the solution to this problem exactly. The 
solutions for 41=h  are presented in Table 1. 
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Table 1. Solution for Problem 1 

x Exact solution Approximate solution 

0.0 1.0000 1.0000 

0.25 0.9375 0.9375 

0.50 0.7500 0.7500 

0.75 0.4375 0.4375 

1.00 0.0000 0.0000 

Table 2. Observed maximum absolute errors for Problem 2 

 

Problem 2. Consider the Bessel’s equation 

( ) ( ) ( ) 01 =+′+′′ xuxuxxu  

with boundary conditions 

( ) ( ) 1100 ==′ uu  

for which the exact solution is 

( ) ( )
( ) .10

0
J

xJxu =  

The observed maximum absolute errors for our methods are summarized 
in Table 2. The methods are compared with the methods in Kanth and Reddy 
[1, 3] and, Caglar and Caglar [2] in Tables 3 and 4 from which it is seen that 
our methods with 81=α  and 101=α  perform better than the two 

methods. Figures 1 and 2 show the comparison of the exact and approximate 
solutions for Problem 2. 
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Table 3. Solution for Problem 2 

10
1=h  20

1=h  
x Exact solution 

81=α  [1] 81=α  

0.0 1.306852 1.306854 1.306843 1.306852 

0.1 1.303587 1.303590 1.303578 1.303588 

0.2 1.293816 1.293819 1.293808 1.293817 

0.3 1.277613 1.277616 1.277604 1.277614 

0.4 1.255098 1.255102 1.255090 1.255099 

0.5 1.226441 1.226444 1.226434 1.226442 

0.6 1.191855 1.191858 1.191849 1.191856 

0.7 1.151599 1.151602 1.151594 1.151600 

0.8 1.105972 1.105974 1.105969 1.105973 

0.9 1.055314 1.055315 1.055313 1.055314 

1.0 1.000000 1.000000 1.000000 1.000000 

Table 4. Solution for Problem 2 
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Figure 1. Comparison of solutions for Problem 2 with 81=α  and .8
1

=h  

 

Figure 2. Comparison of solutions for Problem 2 with 81=α  and .8
1

=h  

Problem 3. Consider 

( ) ( ) ,
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( ) ( ) .01,00 ==′ uu  
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The exact solution is 

( ) .
8

7log2 2x
xu

−
=  

The observed maximum absolute errors for Problem 3 by the new methods 
are tabulated in Table 5. Table 6 shows that our method with 81=α  

performs better than Kanth and Reddy [1]. Similarly, Table 7 shows that our 
new methods with 101=α  and 121=α  produce better accurate results 

compared with Kanth and Reddy [3] and Caglar and Caglar [2]. Figure 3 
shows the comparison of the exact and approximate solutions for this 
problem. 

Table 5. Observed maximum absolute errors for Problem 3 

 

Table 6. Solution for Problem 3 

20
1

=h  
x Exact solution 

81=α  [1] 

0.0 –0.267063 –0.267066 –0.267067 

0.1 –0.264561 –0.264564 –0.264565 

0.2 –0.257038 –0.257040 –0.257142 

0.3 –0.244435 –0.244438 –0.244439 

0.4 –0.226657 –0.226660 –0.226661 

0.5 –0.203565 –0.203568 –0.203569 



O. M. Ogunlaran and N. K. Oladejo 242 

0.6 –0.174975 –0.174977 –0.174978 

0.7 –0.140651 –0.140653 –0.140653 

0.8 –0.100300 –0.100301 –0.100301 

0.9 –0.053562 –0.053563 –0.053563 

1.0 0 0 0 

Table 7. Solution for Problem 3 

 

 

Figure 3. Comparison of solutions for Problem 3 with 121=α  and 

.32
1

=h  
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5. Conclusion 

Numerical methods based on a non-polynomial spline have been 
developed for the solution of both homogeneous and nonhomogeneous linear 
second-order singular boundary value problems. The methods are second-
order accurate as confirmed by the results. The methods are computationally 
efficient and the schemes can be easily implemented on a computer. The 
methods have also been shown to be more accurate than some existing 
methods. The accuracy of the methods can still be improved on by applying 
extrapolation technique to the methods. 
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