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ABSTRACT: This paper considered the application of generalized inverse of a matrix to models not of full 
rank. In the recent paper (1), On the generalized inverse of a matrix, the generalized inverse matrix was 
applied to solution of systems of equations that are linearly dependent and unbalanced. This paper is an 
extensive study of (1). It deals with the application of generalized inverse of a matrix to models that are not 
full rank. [Researcher. 2009;1(2):41-53]. (ISSN: 1553-9865).  
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INTRODUCTION 
 
The work presented in this paper is an extension of the earlier paper [1]. Here the generalized inverse of a 
matrix is applied to models which are not of full rank in nature. 
 

Generalized inverse of a matrix is a research area in mathematical statistics. We are all aware of the fact 
that every non-singular matrix A has a unique inverse denoted by A such that  where IAAAA == −− 11

I is the identity matrix. That is a matrix has an inverse only if it is square and if only if it is non-singular or 
in other words, if its columns (rows) are linearly independent. 
 
In recent years needs have been felt in numerous areas of applied mathematics for some kind of partial 
inverse of a matrix that is singular or even rectangular, hence the beginning of the use of generalized 
inverse. The most familiar applications of matrices is to the solution of systems of simultaneous linear 
equation, and the application of generalized inverse is no exception. Generalized inverse is also applied to 
least squares estimate (LSE) in the study of linear models. 
 
Various methods exist for solving systems of simultaneous linear equation; some of them are: (elimination 
method, row reduction method, backward substitution method etc). Require that the set of linear equations 
be linearly independent. What if the system of equations is linearly dependent? Generalized inverse is able 
to solve linearly dependent and unbalance system of equations.{See Paper[ 1]} 
 
Generalized inverse are of great importance in its general application to non-square and square singular 
matrices. In the case that A is non-singular G = A-1 and G is unique. 
The fact that A has a generalized inverse even if  it is singular or rectangular has particular applications in 
the problem of solving equations like 
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                                                               YAX =     
 
More- over, generalized inverse are of  great importance in the study of linear models where least square 
estimate often leads to equation of the form 
 
                                                                   YXXbX 11 =
 
This has to be expressed in the form 

                                                          ( ) YXXXb 11_1=     
 

But if XX 1  is singular then ( does not exist hence the use of generalized inverse to solve such ) 11 −XX
system of equations is needed, which is the main objective of this study.  In mathematics, a generalized 
inverse or pseudoinverse of a matrix A is a matrix that has some properties of the inverse matrix of A but 
not necessarily all of them. The term "the pseudoinverse" commonly means the Moore-Penrose 
pseudoinverse. 

The purpose of constructing a generalized inverse is to obtain a matrix that can serve as the inverse in some 
sense for a wider class of matrices than invertible ones. Typically, the generalized inverse exists for an 
arbitrary matrix, and when a matrix has inverse, then its inverse and the generalized inverse are the same. 
Some generalized inverses can be defined in any mathematical structure that involves associative 
multiplication, that is, in a semi group. 

The various kinds of generalized inverses include 

• one-sided inverse, that is left inverse and right inverse  
• Drazin inverse  
• Group inverse  
• Bott–Duffin inverse (in German)  
• Moore-Penrose pseudoinverse 

 
 
1.2              HISTORICAL BACKGROUND OF GENRALIZED INVERSE MATRIX 
 
The concept of a generalized inverse seems to have been first mention in print in 1903 by Fredholm, where 
a particular generalized inverse called by him pseudo inverse as an integral operator was given. Several 
investigations have concerned themselves with the Generalized inverse matrices, notably among them 
were: Hurwitz (1912), He characterized all pseudo inverse and used the finite dimensionality of null 
operators of Fredholm operators, already implicit in Hilbert’s discussions in 1904 of generalized Green 
functions were consequently studied by numerous authors, in particular, Myller (1906), Westfall (1909), 
Bounitzky (1909), Elliott (1928) , Reid (1931). Bjerhanmer (1951), Penrose (1951) 
 
 
Relevant publications are the work done by Moore (1920), Siegel (1937), Tseng, Murray and Von 
Neumann (1936), Alkinson (1950), Adetunde et al; (2008). 
 
2. ALGORITHM FOR THE GENERALIZED INVERSE OF A MATRIX 
 
An algorithm for finding the generalized inverse of a matrix is as follows, according to Adetunde et al; 
(2008) 
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Step 1: in A of rank r, find any non-singular minor of order r call it M 
 
Step 2: invert M and transpose the inverse (M) 
 
Step3: in A replace each element of M by the corresponding element of (M) 
 
That is a = M the (s,t) element of m, then replace a b M, the (t,s) element of M equivalent to the (s,t) 
element of the transpose of M 
 
Step4: replace all the other elements of A by zero 
 
Step 5: transpose the resulting matrix and the result is  G a generalized inverse of A 
 
2.1     PROPERTIES OF GENERALIZED INVERSE OF A MATRIX 
 
If G is a generalized inverse of A then 
 

• AGA = A 
• G is  not unique 
• G is of order m x n if A is of oder n x m 

 
If G is a generalized inverse of XX then 
 

• G is also a generalized inverse of XX 
• XGXX = X; that is , GX is a generalized inverse of X 
• XGX is invariant to G 
• XGX is symmetric, whether G is or not 

 
 
 

3       APPLICATION OF GENERALIZED INVERSE TOMODELS NOT OF FULL RANK 
 
The model we shall be dealing with is  
            
                                                  eXbY +=
 
Where Y is an N x 1 vector of observations yi 
 
B is a P x 1 vector of parameters X is an N x P matrix of known values (in most cases 0’s and 1’s ) and e is 
a vector of random error terms. 
                    
 The following assumptions are made 
     
                                        ( )IXbYandIe 22 ,),0( σσ ≈≈  
 
⇒  The random errors are distributed normally with a zero mean and constant variance  
      is also distributed normally with a mean of Xb and a constant variance  The 
normal equation corresponding to the model is given as 

YandI2σ .2 Iσ

            
                                                  eXbY +=  
which can be derived by the least squares method, to get 
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Example 

YXXbX 11 =

 
In an experiment to estimate the effect of type of plant on the weight of the maize fruit four different maize 
plants given the same condition recorded the following weight of its fruit at harvest as 
 

Weight of 10 
plants 
 

Type 1 Type 2 Type 3 Type 4 

 62 80 62 60 
 71 75 75  
 83 45   
 90    
Total 306 200 137 60 

 
To estimate the effect of the type of plant on the weight of plant we assume that the observation is the 
sum of four parts  

jiy ,

           jiIji eY ,, ++= αν       
 
Where 
              ν  is the population mean of the weight of plant               
                  
               Iα  is the effect of the type I on weight 
 
                 is the random error term peculiar to the observation  jie , jiy ,

 
To develop the normal equations, we write down 10 observations in terms of the equation of the model 
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This is written in matrix form as 
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Y is the vector of observations, X is the incidence matrix and b is the vector of parameters to be considers 
 
The normal equations corresponding to the model 
 
      can be derived by least square to give eXbY +=
 
                                  YXXbX 11 =
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Matrix XX 1  has determinant equal to zero and hence not of full rank, therefore matrix XX 1  has no 
unique inverse, hence the equation cannot be express as 
                                                          

                                                          ( ) ( )YXXXb 111 −
=    

 

since (  does not exist. ) 11 −XX
This implies that the normal equation has no unique solution. To get one of the solution, we need to find 
any generalized inverse G of ( )XX 1  and write the corresponding solution as 
 
                                                         YGXb 10 =
 
where G is a generalized inverse of XX 1  
 
the notation   used in equation emphasizes that what is derived by solving is only a solution 
to the equations and not an estimator of b  

bnotandb 0
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YGXb 10 =  
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The expectation of b0 is given as 
    
  E(b0) =  
  
   E(Y) = Xb 

)(1 YEGX

     
  ∴ E(b0) =  XbGX 1

 
   E(b0)  =  Hb 
 
Where H = hence b0 is an unbiased estimator of Hb but not of b XGX 1
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The variance of b0 is given as  
        Var(b0) = Var ( )YGX 1  
 
                =  
                  

( ) 11 XGYVarGX

                =  211 σXGGX
 
For a full rank model Var(b) = (X1X)-1 , by an appropriate choice of G,  can reduce 
further to  

2σ 211 σXGGX
2σG

 
Estimating E(y) 
 
                Corresponding to the vector of observations y, we have the vectors of estimated expected values 

E( ). 
Λ

y
 

               E(  
 
This vectors is invariant to the choice of whatever generalized inverse of X1 Xis used for G, because XGX1 

YXGXXbyy 10) ==≡
ΛΛ
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is invariant. This means that no matter what solution of the normal equations is used for b0 the vector 

 will always be the same. YXGXy 1=
Λ
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To demonstrate the invariance of  to the choice of G. Consider 
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H  =   GX1X,  hence  we have 
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From the above results, it demonstrates that  is always the same no matter the G used. 
Λ

y
The sum of squares regression is also invariant to the choice of G 
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4 PARTITIONING THE TOTALL SUM OF SQUARES 
 

Partitioning the total sum of square for the full rank model is the same for the model not of full rank. The 
only difference is that there is utility in corrected sums of squares and products of the x – variables.  
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                     = 50993 -  49420.9 
 
                  SST = 1572.1 
  

                     b0X1 Y= ( 60  16.5   6.5   8.5   0)  5.49733

60
137
200
306
703

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

 
SSR = 49733.5 – 49420.9 
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SSR = 312.6 
 
SSR is invariant to the choice of G, to show the invariance of SSR ,   we   consider 
 
  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

60
5.68
7.66
5.76

0

0b  

 
 
 

b0 X1Y = (0   76.5   66.7   68.5   60)  5.49733

60
137
200
306
703

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

 
SST = 49733.5 – 49420.9  
 
     = 312.6 
 
Since SSR is the same,  no matter the G used we say that SSR is invariant to G 
 
SSE = SST – SSR 
 
      = 1572.1 – 312.6 
 
     = 1259.5 
 
   Test  the  hypothesis 
 
   H0 : Xb = 0 
 
   H1 :  Xb  0 ≠
 
For the full rank model the test hypothesis is 
 
  H0 : b = 0 
 
  H1 :b   0 ≠
 
But for a model not of full rank b is not estimable, hence the hypothesis 
 
  H0 : b = 0 
 
  H1 : b  0 ≠
 
Cannot be tested because b is a non-estimable function 
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ANOVA table 
 

Source Df  SS MS F 
Regression  
Residual   Total    

3  
6 
9                             

312.6 
1259.5 
1572.1 

104.2 
209.9 

0.496 

 
 
 
R2 = 312.6/1572.1  =  0.199 
 
 
The total variation explained by the model is 19.9%, the overall model is not significant, meaning that the 
weight of the maize fruit does not depend on the type of maize plant. 
 
 
SAS OUTPUT       
 
                                      
      
CONCLUSION 
In this paper, the method of generalized inverse had been applied on  linear models which is not of full 
rank. Evidence has shown from our result that generalized inverse can not be overlooked since it plays a 
very important role in models not of full rank. Most importantly, the use of generalized inverse of a matrix 
enables us to solve systems of linear equations that are unbalance and linearly dependent easily. 
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