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Chapter 1 

Microbial Inoculants-Assisted 

Phytoremediation for Sustainable Soil 

Management 

Elizabeth Temitope Alori and Oluyemisi Bolajoko Fawole 

Abstract Agricultural soil pollution refers to its accumulation of heavy metals and related 

compounds which could be from natural or anthropogenic sources. This threatens food 

quality, food security, and environmental health. The traditional physico-chemical 

technologies soil washing used for soil remediation render the land useless as a medium for 

plant growth, as they remove all biological activities. Others are labor-intensive and have 

high maintenance cost. Phytoremediation, sustainable and cheaper in situ remediation 

techniques was therefore considered. However, plants do not have the capability to degrade 

many soil pollutants especially the organic pollutant. It is therefore imperative to take 

advantage of the degrading ability of soil microorganisms. This chapter therefore focuses on 

phytoremediation techniques augmented by microbial inoculants. 

Keywords Inoculants • Microbes • Phytodegradation • Phytoremediation • Soil pollution • 

Soil management • Sustainable 

1.1 Introduction 

Pollution of agricultural soils refers to its accumulation of heavy metals and related 

compounds which could be from natural or anthropogenic sources. This threatens food 

quality, food security, and environmental health [1]. Soil pollution produces change in the 

diversity and abundance of biological soil populations [2]. This is critical because of the role 

of soil organisms in plant establishment and survival. Such elimination of soil organisms can 

lead to problems with plant establishment and survival. Crops raised on polluted soil may 

contain harmful levels of pollutants that can be passed on to the animals and human that eat 

them [3]. Inhaling dust  
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blown from polluted soil can be injurious to one that inhales it. More also, polluted soil 

cannot be used for commercial development, parks or recreation [4]. Soil pollutants alter 

plant physiology. It can cause cell membrane disruption, damage to photosynthetic apparatus, 

and can also alter the physical and chemical properties of the soil where plants are growing 

[5]. 

Cleaning of polluted soil may be very difficult because both soil pollutants and soil minerals 

carry small electric charges that cause each to bond with each other. It is well known that 

heavy metals cannot be chemically degraded and need to be physically removed or be 

immobilized [6]. Traditionally, remediation of heavy metal-contaminated soils is either on-

site management or excavation, and subsequent disposal to a landfill site [7]. However, this 

method of disposal merely shifts the contamination problem elsewhere. Soil washing for 

removing contaminated soil is an alternative to excavation and disposal to landfill. This 

method is however costly and produces a residue rich in heavy metals, which will require 

further treatment or burial. Moreover, these physico-chemical technologies used for soil 

remediation render the land useless as a medium for plant growth, as they remove all 

biological activities. Other technologies such as vitrification, leaching, electrokinetics soil 

vapor extraction, thermal desorption, chemical processing, etc., are labor-intensive and have 

high maintenance cost [8, 9]. It is therefore imperative to develop a sustainable on-site 

technique for remediation of heavy metal contaminated sites. 

For better soil management, an increase in use of biological potential is important. 

Phytoremediation is one of the sustainable and cheaper in situ remediation techniques to be 

considered. Phytoremediation is a novel green technology that uses specialized plants and 

associated soil microbes to remove, destroy, sequester, or reduce the concentrations or toxic 

effects of contaminant in polluted soil and water [4]. The plant root-colonizing microbes or 

the plants themselves absorb, accumulate,translocate, sequester, and detoxify toxic 

compounds to non-toxic metabolites. 

Five important approaches can be considered in the use of plants to clean up polluted soil. (1) 

Phytostabilization, a process in which pollutants are immobilized by plant activity resulting 

in attenuation of the wind and soil erosion and runoff processes into the ground water or air. 

(2) Hydraulic control, plants act like a pump, draws the groundwater up through their roots to  
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keep it from moving. This reduces the movement of contaminated groundwater toward clean 

areas off-site. (3) Phytovolatization involves use of plants to take up certain contaminants and 

then converts them into gaseous forms that vaporize into the atmosphere. (4) Phytofiltration 

refers torhizofiltration where contaminants such as metals are precipitated within the 

rhizosphere. (5) Phytoextraction (Phytoaccumulation) which involves metal 

hyperaccumulating plants which can contain more than 1% of metals in harvestable tissues 

[10, 11] (Fig. 1.1). 

However, plants do not have the capability to degrade many soil pollutants. It is therefore 

imperative to take advantage of the degrading ability of soil organisms. Organic toxins 

containing carbon such as the hydrocarbons found in gasoline and other fuels can only be 

broken down by microbial processes [12]. Symbiotic root 
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Fig. 1.1 Mechanisms of microbial-assisted phytoremediation 

colonizing microorganism through metal sequestration increases metal tolerance in plants. 

The remediation by plant using the degrading ability of soil organisms is called 

phytodegradation. This helps us to understand integrated activity patterns between plants and 

microbes [13]. Some soil microbes such as the arbuscular mycorrhizal fungi (AMF) secret 

glycoprotein called glomalin. This can form complexes with metals. Microbial organisms 

within the rhizoplane can take part in phytoremediation by protecting the plants from the 

toxic effect of the contaminants while the plants in return provide the microbial processes the 

boost they need to remove organic pollution from the soil more quickly. Plants excrete 

organic materials that serve as food for microbes thus playing a key role in determining the 

size and health of soil microbial population. Bioaugmentation enables an increase of 

biodegradation of contaminated sites by the introduction of single strains or assemblages of 

microorganisms with the desired catalytic capabilities [14]. Microbial assemblages are found 

to be efficient since each partner can accomplish different parts of the catabolic degradation 

[15]. In this chapter, our focus is mainly on phytoremediation augmented by microbial 

inoculants. We begin with the contribution of plants and microbial inoculants in 

phytoremediation process. Then the methods of inoculating plants with microbial inoculants, 

the various mechanisms used by the microbial inoculants to assist plant in remediation, and 

the limitations of microbial inoculants-assisted phytoremediation are summarized and 

discussed. 



 

                                                                   

 

Fig. 1.2 Sources of Soil Pollutants 

1.2 Sources of Soil Pollution 

Soil pollutants get introduced to the soil from various sources ranging from natural 

(Lithogenic) to anthropogenic activities (Fig. 1.2). Heavy metals commonly get introduced 

via human activities that are related to energy and mineral consumption [5], while petroleum 

hydrocarbons usually come from accidental spills of petroleum-based products commonly 

used. Various industrial processes and anthropogenic activity es in urban areas induce the 

release of metals and metalloids (MM) (toxic and genotoxic compounds) in natural 

environments. Agricultural inputs such as chemical fertilizers, herbicides, and pesticides 

leaves the soil polluted with heavy metals [16]. According to Pietrzak and Uren [17], 

excessive use of fungicides and herbicides that are rich in heavy metal results in soil 

pollution. Copper for instance is used as a broad-spectrum bacterial and fungicidal 

agricultural pesticide and as fertilizer component because of its antimicrobial properties, but 

Cu is a common soil pollutant that persists in the soil providing a chronic, long-term stress on 

the soil microbial community [18]. Industrial activities such as chemical works, service 

stations, metal fabrication shops, paper mills, tanneries, textile plants, waste disposal sites, 

and intensive agriculture equally brings about the appearance of serious environmental 

problems such as soil pollution [19]. Indiscriminate waste disposal practices have led to 

significant build upon a wide range of metal(loid)s, such as arsenic (As), cadmium (Cd), 

chromium (Cr), copper (Cu), mercury (Hg), lead (Pb), selenium (Se), and zinc (Zn) in soils 

[20]. Kierczak 

et al. [21] found that soils in the areas around historic smelters are highly polluted of 
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with metal(loids)s (up to 4000 mg/kg Cu, 1500 mg/kg Zn, 300 mg/kg As, and 200 mg/kg Pb). 

Fossil fuel combustion is another source of soil pollution reported by Krgović et al. [22]. 

Vehicle emissions, industrial processes, or waste incineration plants were revealed to 

introduce some pollutant such as heavy to what should have been valuable soil [23]. Soil 

pollutants could originate from the mining and smelting of metal ores [24], runoff of urban 

soils, fertilizer application, or effluents discharged [25]. 

1.3 Contributions of Plants and Microbial Inoculants in Phytoremediation 

Microbial-assisted phytoextraction optimizes the synergistic effect of plants and 

microorganisms and has been used for the cleaning-up of soils contaminated by metals [2]. 

Plant translocates and sequesters pollutions such as heavy metals while microbes degrade 

organic contaminants. Plants can store many contaminants in biomass that 

can later be harvested, while microbial assemblages can also convert contaminants such as 

heavy metals to stable and/or less toxic form. They can facilitate the uptake of pollutants such 

as heavy metals by plant roots. Microorganisms that reside on or within aerial plants tissue 

can help to stabilize and/or transform contaminants that have been translated which may limit 

the extent of volatization [13]. Plant root exudates such as enzymes, amino acids, aromatics, 

simple sugars, and aliphatics stimulate the growth of root-associated microorganisms; on the 

other hand, microbes can reduce the phytotoxicity of the contaminants in the soil or augments 

the capacity of the plant to degrade contaminant [3]. Ability of plant root to extend deeper 

into soil, allowing access to water and air and therefore changing the concentration of carbon 

dioxide, the pH, osmotic potential, redox potential, oxygen concentration, and moisture 

content of the soil, could lead to an environment that will better able to support high micro-

biomass [26]. This enhanced trace element uptake by plants can be ascribed to an increase in 

root absorption ability and/or to an enhancement of trace metal bioavailability in the 

rhizosphere, mediated by microorganisms. 

Plants can increase biodegradation through the transfer of oxygen to the rhizosphere and the 

release of soluble exudates that provide nutrient sources for micro-organisms [27]. Thus, 

plants enhance microbial growth and hence the associated contaminant-degradation 

processes. Microorganism contribution in immobilizing elements or facilitating plant 

absorption plants may significantly contribute to removal through uptake in biomass [28]. 

Microbial assemblages improve plant health and growth, suppress disease-causing microbes, 

and increase nutrient availabilityand assimilation [29]. 

 

 



 

 Methods of Inoculating Plants with Microbial Inoculants 

Plants to be used as phytoremediator to clean polluted soils could be inoculated with 

microbial assemblages via quite a number of techniques. These methods could include: (1) 

Seedinoculation, (2) Soaking plant roots with microbial suspension, when the root of ryegrass 

was soaked with a suspension of an endophytic Massilia sp. (Pn2) the same was found to 

have been translocated to the plant shoots [30]. (3) Painting plant leaves with microbial 

suspension [31–33]. Afzal et al. [34] discovered the cells of BurkholderiaphytofirmansPsJN 

in the internal tissue of the shoot and root when the plant was inoculated via leaf painting. 

Root colonization strategy was found to be the optimal colonization method for 

circumventing the risk of plant organic contamination [32]. 

1.5 Types of Soil Pollutants 

Soil pollutant could be organic or inorganic present in the hydrosoluble fraction (complexed, 

adsorbed onto particles or dissolved). The most common inorganic contaminants are heavy 

metals and mineral oils such as Cd, Cr, Pb, Cu, Hg, NiSe, As, and Zn [35]. Industrial 

effluents release organic pollutants like hydrocarbons, polycyclic aromatic hydrocarbons, and 

anionic detergent. Other soil pollutants include plant organic materials, petroleum 

hydrocarbons, and organochlorines [36]. Table 1.1 reveals some examples of soil pollutants 

that could be removed from soil via a microbial-assisted phytoremediation technique. 

1.6 Mechanisms of Microbial Inoculants in Phytoremediation of Polluted Soil 

Microbial inoculants can improve pollutant removal through various mechanisms. Some has 

the potential to produce metal chelating siderophores, which could improve metal 

bioavailability [37]. Moreover, they produce biosurfactants (rhamnolipids) that can enhance 

the solubility of poor water-soluble organic compounds and the mobility of heavy metals 

[38]. Formation of biofilm is another mechanism by which microbial inoculants assist plants 

in remediation of polluted soils [39]. In addition, these microbes can transform metals into 

bioavailable and soluble forms through the action of organic acids, biomethylation, and redox 

processes [39]. 

Diverse soil microbes have the ability to secrete plant hormones such as indole-3-acetic acid 

(IAA), cytokinins, gibberellins (GAs), and certain volatiles which promote plant growth by 

altering root architecture [16]. The microbial plant growth stimulatory actions result from the 

manipulation of the complex and balanced network of plant hormones that directly are 

responsible for growth and root formation. For example, IAA produced by soil microbes has 

been demonstrated to enhance 

 



 

Table 1.1 Some examples of soil pollutants that could be removed from soil via microbial-

assisted phytoremediation technique 

Plant  Microorganism Pollutants References 

Helianthus annus Micrococcus sp. MU1and 

Klebsiella sp. BAM1 

Cd Prapagdee et al. [50] 

Polygonumpubescens Enterobacter sp. JYX7and 

Klebsiellasp. JYX10   

Cd Jing et al. [51] 

Zea mays L Azotobactorchroococum and 

Rhizobium leguminosarum 

Pb Hadi and Bano [52] 

Solanum melongena Pseudomonas sp. NaCl Fu et al. [53] 

Vignaunguiculata Scutelospore reticulate, Glomus 

phaseous 

Al, Mn Alori and Fawole [2] 

Solanum nigrum Pseudomonas sp. LK9 Cd Chen et al. [54] 

Brassica napus PantoeaagglomeransJp3-3, and 

Pseudomonas thivervalensis 

Y1-3-9 

Cu Zhang et al. [55] 

Brassica juncea Paenibacillusmacerans 

NBRFT5, Bacillus endophyticus 

NBRFT4, B. pumilus NBRFT9 

Cu Tiwari et al. [56] 

Loliummultiflorum Lam Staphylococcus sp. strain BJ06 Pyrene Sun et al. [57] 

Brassica oxyrrhina Pseudomonas sp. SRI2, 

Psychrobacter sp. SRS8and 

Bacillus sp. SN9 

Ni Ma et al. [58] 

Brassica napus Acinetobacter sp. Q2BJ2 

and Bacillus sp. Q2BG1 

Pb Zhang et al. [55] 

Cytisusstriatus Rhodococcuserythropolis 

ET54b 

Sphingomonas 

Sp. D4 

hexachlorocyclohexa

ne (HCH)- 

Becerra-Castro et al. [59] 

Cichoriumintybus Rhizophagusirregularis Diesel Driai et al. [60] 

Medicago sativa Pseudomonas aeruginosa (Cu, Pb and Zn and 

petroleumhydrocarbo

ns 

Agnello et al. [35] 



 

Orychophragmus 

violaceus 

Bacillus subtilis, B. cereus, B. 

megaterium, and Pseudomonas 

aeruginosa 

Cd Liang et al. [61] 

Cytisusstriatus(Hill) 

Rothm 

RhodococcuserythropolisE T 

54b and Sphingomonassp D4 

 Becerra-Castro et al. [62] 

Arabidopsis thaliana Achromobacterxylosoxidans phenolic Ho et al. [63] 

Solanum lycopersicum Penicilliumjanthinellum LK5 Al Khan et al. [64] 

Brassica napus Rahnella sp. JN6 Cd He et al. [65] 

Triticumaestivum Pseudomonas putida KT2440 Cd, Hg, Ag Yong et al. [66] 

Brassica juncea Bacillus subtilis SJ-101 Ni Zaidi et al. [67] 

Sedum plumbizincicola Bacillus pumilus E2S2 and 

Bacillus sp. E1S2 

Cd Ma et al. [68] 

Brassica napus Pseudomonas fluorescens 

G10and Microbacterium sp. 

G16 

Pb Sheng et al. [69] 

Trifoliumrepens Arbuscular mycorrhizal fungi 

and Bacillus cereus 

Heavy metals Azcón et al. [70] 

Iris pseudacorus Arbuscular mycorrhiza fungi Pb, Fe, Zn, and Cd Wężowicz et al. [71] 

Brassica juncea Rhizobium leguminozarum Zn Adediran et al. [72] 

Rahnella sp. Amaranthushypochondriacus, 

A.Mangostanus and S. nigrum 

Cd Yuan et al. [73] 

Brassica juncea Staphylococcus arlettae 

NBRIEAG-6 

As Srivastava et al. [74] 

Orycoprhagmus violaceus Bacilus subtilis, B. cereus, 

Flavobacterium sp. and 

Pseudo(Zhang et al. 

[55])monas aeroginosa 

Zn He et al. [75] 

Lupinusluteus BurkholderiacepaciaVM1468 Ni and 

trichloroethylene 

(TCE) 

Weyens et al. [76] 

Alnus firma Bacillus thuringiensis GDB-1 As Babu et al. [77] 
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Fig. 1.3 Strategies of phytoremediation through microbial assemblages 

root proliferation [40]. In addition, soil microbes possess growth- promoting traits, including 

phosphorus solubilization, nitrogen fixation, iron sequestration, and phytohormone, which 

improve plant growth and increase plant biomass [39].In addition to degrading soil pollutants 

microbial assemblages, also partake in phytoremediation by producing hormones, fixing 

atmospheric nitrogen, or solubilizing P [41]. One of the most important mechanisms by 

which microbial assemblages respond to stress condition such as from soil pollutant is by 

increasing ethylene levels that result to an increase in cell and plant damage [42]. Many 

microbes that augment phytoremediation destroy a precursor of the ethylene (1-

aminocyclopropane-1-carboxylate (ACC)) that by producing the enzyme ACC deaminase, 

that in turn facilitates plant growth and development by decreasing plant ethylene levels [39]. 

Figure 1.3 depicts strategies of phytoremediation through microbial assemblages. 

1.7 Challenges of Microbial Inoculants-Assisted 

Phytoremediation 

The success of microbial inoculation-assisted phytoremediation encounters some set back due 

to the following reasons: (1) The number of degrading microbes available regarding the 

pollutant to be degraded may be low or non-detectable, (2). 

 

 

 



 

The physical and chemical properties of pollutants. The various types of soil pollutants vary 

in their mobility, solubility, degradability, and bioavailability. These properties play very 

important role in the removal of the pollutants from the soil. Pollutant or mixtures of 

pollutants sometimes require several metabolic pathways operates simultaneously with 

sometimes metabolic intermediates whose toxicity toward indigenous microbes may be high, 

and (3) Some polluted areas requiring long microbial adaptation period of time justifying soil 

bioaugmentation [14, 43]. Other abiotic factors that also affect the success of microbial 

inoculation-assisted phytoremediation include; temperature, aeration, soil pH, cation 

exchange capacity (CEC), soil organic matter content, sorptive capacity of soil, and redox 

potential. According to Diels and Lookman [44], microbial inoculation-assisted 

phytoremediation is influenced by temperature in the range 5–30 °C. It therefore means that 

the success of microbial inoculation-assisted phytoremediation will depend largely on season 

as this will be ineffective during winter in temperate countries. Grundmann et al. [45] 

reported that the efficiency of microbial inoculation-assisted phytoremediation depends on 

pH in the range 5–8. Many metal cations like Cd, Cu, Hg, Pb, and Zn are reported to be more 

soluble and available in the soil solution at low pH (below 5.5) [46]. However, 

Phytoremediation of atrazine by two microbial consortia was seriously affected by pH and 

soil organic matter content. At pH 6.1 only one consortium degraded atrazine but at pH >7 

atrazine was effectively degraded by the consortia, the microbial inoculants were ineffective 

at pH 5.7 because of their interaction with organic matter [47]. pH for the degradation of 

phenol and TCE was observed to vary from 6.7 to 10 depending on whether the microbial 

inoculant cells are free or immobilized [48]. As revealed by Bhargava et al. [46] higher CEC 

of soil permits greater sorption and immobilization of the metals. Depending on contaminant 

characteristics, different microbial-assisted phytoremediation mechanisms require different 

final electron acceptors. For example because of the highly reduced state of petroleum 

hydrocarbons, the preferred and most thermodynamically relevant terminal electron acceptor 

for microbial process is O2 while the degradation of chlorinated solvents, depending on the 

degree of halogenation, is different from that of petroleum hydrocarbons and other oxidized 

chemicals, and the preferred redox condition is anaerobiosis [44]. 

1.8 Characteristics to Consider in the Choice of a Plant 

for Microbial-Assisted Phytoremediation 

A key aspect in biological remediation methods is the selection of appropriate plant–bacteria 

partnerships for the remediation of polluted soils [3]. Some of plant properties to be 

considered include: exceptional contaminant tolerance, ability to quickly grow on degraded 

land, and rapid biomass production. For instance alfalfa (Medicago sativa L.) that is often 

used in phytoremediation of contaminated soil is a fast growing species. Another critical 

characteristic to be considered is the  
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composition of plant-recruited microbial communities. Plants that develop extensive tap root 

system favor the establishment of rhizosphere microorganisms. Plants ideal for 

phytoremediation should possess the ability to grow outside their area of collection, to 

produce high biomass, easy harvesting and accumulation of a range of heavy metals in their 

harvestable parts [49]. Poplar and willow possess deep root systems, produce great biomass, 

can be grown in a wide range of climatic conditions and these explain why they are effective 

phytoremediator of polluted soil [46]. 

1.9 Conclusions 

Soil pollutant could be organic or inorganic present in the hydrosoluble fraction adsorbed 

onto particles or dissolved. Microbial-assisted phytoremediation remove, destroy, sequester, 

or reduce the concentrations or toxic effects of contaminant in polluted soils. Production of 

siderophores, biosurfactants, formation of biofilms, 

organic acids production, biomethylation, and redox processes and plant growth hormones 

stimulation are mechanisms employed by microbial inoculants in phytoremediation. The 

number of available degrading microbes and the physical and chemical properties of 

pollutants determine the success of microbial inoculants-assisted phytoremediation. 

Exceptional contaminant tolerance, ability to quickly grow on degraded land, ability to grow 

outside their area of collection, and rapid biomass production are important plant 

characteristics to be considered in the choice of plant for phytoremediation. 
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