British Journal of Mathematics & Computer Science 9(6): 537-558, 2015, Article no.BJMCS.2015.223 ISSN: 2231-0851

SCIENCEDOMAIN international www.sciencedomain.org

Parameters Determination for the Design of Bevel Gears Using Computer Aided Design (Bevel CAD)

B. O. Akinnuli¹, O. O. Agboola^{1*} and P. P. Ikubanni¹

¹Department of Mechanical Engineering, Landmark University, OmuAran, Kwara State, Nigeria.

Article Information

DOI: 10.9734/BJMCS/2015/18411 <u>Editor(s):</u> (1) Dariusz Jacek Jakóbczak, Chair of Computer Science and Management in this department, Technical University of Koszalin, Poland. (1) Anonymous, Duzce University, Turkey. (2) Wang yong, Mechanical Department, TianJin University of Commerce, China. Complete Peer review History: http://sciencedomain.org/review-history/9852

Original Research Article

Received: 20 April 2015 Accepted: 12 May 2015 Published: 18 June 2015

Abstract

This paper prescribes a Computer Aided approach to the design of bevel gears. The approach utilizes standard design equations and standard data on bevel gears; linking them together using a Programming language(C#) to develop this special software (Bevel CAD) that designs and determines the strengths and dimensions of bevel gears. This study reviews the Procedural steps (algorithms) involved in the design of bevel gears and the development of the software package (Bevel CAD) which is to be used in designing bevel gears. When material required are selected based on the area of application, the software will make use of the data provided using the C# to determine the required; speed and velocity of the bevel gear, number of teeth, speed ratio, dynamic load, endurance strength and maximum wear load for the design bevel gear. The Bevel CAD's performance was verified by comparing the results of Algorithm calculation and the software's results. The Bevel CAD was confirmed effective as the minor differences obtained between the results were due to approximation errors. The Bevel CAD increases productivity but reduces drudgery of enormous calculations; hence, making it a recommended tool for industries and tertiary institutions for the designing of bevel gears.

Keywords: Bevel gear; design parameters; software development; CAD.

1 Introduction

A machine is the combination of various elements to perform a task. In doing so, power (torque) is needed to be transferred from one element or part to another; and this can be achieved with the use of power transmitting devices such as belt drives, chain drives, gear drives. Gears lead other power transmitting devices (chain drives, belts drives, etc) because of its ability to achieve definite velocity ratio. In precision

^{*}Corresponding author: omegawole@gmail.com;

machines (clock), in which a definite velocity ratio is of importance, gears and other toothed wheels could be used.

A gear is a rotating machine element having cut teeth (or cogs) which mesh with another toothed part in order to transmit torque. Geared devices can change the speed, torque, and direction of a power source. According to [1], gear is one of the most important devices used in many types of machinery. Gears allow the user to translate power, motion and torque. Gears have a power transmission efficiency of up to 98% and are some of the most durable torque transmitting machine elements.

A bevel gear system is used for transmitting power at a constant velocity ratio between two shafts whose axes intersect at a certain angle. Gear can be used to transmit large power (small car can run on belt drives but large vehicles can't, instead gears are being used). Gears are mostly applicable to small centre distances of shafts; they possess high efficiencies; they have reliable services; gears have compact layout. These among other characteristics of gears give it edge over other power transmitting devices. Bevel gears among other gears are used for transferring torque with intersecting shafts in the same plane.

While bevel-gear CAD software is a computer software that aids engineers, bevel-gear designers, manufacturers in the design of bevel gears. Since the World is turning towards computer technology and the use of computer to alleviate human efforts; the application of computer to the engineering world is not left behind. Hence, numerous works has been done on Computer Aided Design. Gear as an important machine component has also benefitted from this technological development. Works had also been done on gear design software and improvements are being achieved on daily basis. Therefore, [2] stated that model design of the bevel and hypoid gear is an area of great research interest nowadays. Recently, modeling of spiral bevel and hypoid gear made a lot of achievement, summarized as: 1) Point-to- surface modeling by fitting discrete points on the tooth surface, during which the vital steps are the solution of the discrete points on the tooth surface and their obtainment based on derivation of the tooth surface equations. 2) line-to-surface modeling by fitting tooth profile curves, whose core areas are the equation derivations of the tooth profile curves and the output in the three-dimensional graphics software [3].

Computer Aided Design CAD was defined by [4] as any design activity that involves the use of computer to create, modify and document engineering design using interactive computer graphics systems referred to as a CAD system. Since its inception, CAD has undergone continuous development. [5] reported that by the 1970's, CAD systems were being used in many drafting application and by the mid-1970s, there was an established market for CAD. CAD has grown from a narrow activity and concept to a methodology of design activities that include computer or group of computers used to assist in the analysis, development and drawing of product components. One of the areas where CAD was employed in manufacturing technology as related to gear design is the Gear skiving where CAD simulation approach was used [6].

Also, CAD surface design can be used for rapid prototyping by sweeping or rotating, and creating the curves surface from the point cloud, a variety of new modeling and their respective optimization methods were explored. This can then compensate for some deficiencies in the previous modelings, and create new conditions for fast and accurate parametric modeling of the spiral bevel and hypoid gear [7].

2 Bevel Gear Review

As reported by [8], the first primitive gears can be traced back to over 3000 years ago where early gears were made from wood. They were made of wood and had teeth of engaged pins. Early Greeks used metal gears with wedge shaped teeth; Romans used gears in their mills; stone gears were used in Sweden in the Middle Ages (Gears Manufacturers). All of these cultures found reasons to use basic gearing to convert energy or motion in one form to a form they could use in devices for the technological advancement of their societies.

Gears have existed since the invention of rotating machinery. However due to their force multiplying proportions, early engineers used them for hoisting heavy loads such as building materials. The mechanical

advantage of gears was also used for ship anchor hoist and catapults. Bevel gears are indispensable parts of drive systems found in power transmission for various machinery and equipment [9]. Due to a relatively complex geometry, continuous efforts are made to streamline the design and manufacturing process of bevel gears [10]. As a result of this, there is need for accurate modeling of spiral bevel which gives room for digitized manufacturing such as the tooth contact analysis (TCA) technology, the error correction of tooth surface technology and other key technologies [11].

According to [12], mating gear teeth acting against each other to produce rotary motion may be likened to a cam and follower. As two gears mesh, there is tendency for unwanted noise to be generated. [13] claimed that accurate tooth surface and good surface quality are critical to achieve the low-noise bevel gear drives.

Bevel gear has the numerous applications in engineering and machine design. It has several importance and applications. Among these applications are:

2.1 The Differential Drives

This can transmit power to two axles spinning at different speeds, such as those on a cornering automobile. The Fig. 1 below shows a typical example of a differential bevel gear.

Fig. 1. Hypoid bevel gears in a car differential Source: [14]

2.2 Dividing Head

Dividing head used machining operations like milling gears, sprockets on milling machine.

2.3 Hand Drill Mechanism

Hand drill mechanism as the handle of the drill is turned in a vertical direction, the bevel gears change the rotation of the chuck to a horizontal rotation.

2.4 Rotorcraft Drive Systems

Spiral bevel gear are important components on this system and are used to operate at high load and high speed. In this application, spiral bevel gears are used to redirect the shaft from the horizontal gas turbine engine to the vertical rotor.

Over the years, engineers have been coming out with various designs of bevel gears; trying to improve on their performances under various loads. This has assisted in the invention and production of machines with higher performances and efficiencies.

The bevel CAD software in discussion is a specialized software not meant for the designing of other gears or machine part unlike other multi-purpose software such AUTOCAD, INVENTOR, CATIA, PRO E. The software is mainly for the design of bevel gears. Its specialization has made this software easier and more flexible for bevel gear manufacturers and designers.

This paper aims at identifying the designed parameters required in designing bevel gear, collect relevant data for bevel gear design, develop algorithm for the steps required for the computation for each parameter, develop a software for implementing the algorithm developed and test the performance and effectiveness of the software model developed.

The numerous applications of bevel gears in machines have made its design more frequent and important. As a result of its immense importance, several works are being done on improving the efficiencies of bevel gears under static and dynamic load. This among other under-listed reasons justifies this research work:

- i. Time and efforts in designing Bevel gear can be far reduced by using the BEVEL CAD software in the design. This will also assist designer focus on conception of ideas.
- ii. The modeled software is more flexible and user friendly; hence, making it comprehensive and easier for designer to use.
- iii. The software uses standard data and formula from renowned Engineering Textbooks; thus, making its result more reliable.
- iv. The computational speed of the modeled software is comparatively better than other multipurpose CAD software such as INVENTOR, AUTOCAD etc

3 Methodology

3.1 Terminologies and Design Parameters Identification

The design of a bevel gear starts from getting acquainted with various terminologies, symbols/parameters and formulae attributed to Bevel gear. A bevel gear is shaped like a section of a cone. See Fig. 2.0 for the nomenclature of a meshed bevel gear.

Fig. 2.0. Nomenclature of a meshed bevel gear Source: [15]

The parameter/symbol used, description as well as the formula (as applicable) are tabulated as shown in Table 1.

Symbol/Parameter	Description/Meaning (unit)	Formula
σ_{o1}	Allowable static stress of pinion wheel	To be determined from the
	(N/mm^2)	material used
σ_{o2}	Allowable static stress of gear wheel (N/mm ²)	To be determined from the
		material used
T_1 or T_2	Number of Teeth in pinion and wheel	One of the two would be given
	respectively	-
N_1 or N_2	Speed of pinion and gear respectively (rpm)	One of the two would be given
G	Velocity ratio or input gear ratio (unitless)	To be given
$\Theta_{\rm s}$	Shaft angle (°)	To be given
θ_{p1}	Pitch angle for pinion wheel (°)	$tan^{-1}\left(\frac{sin\theta_s}{G+cos\theta_s}\right)$
θ_{p2}	Pitch angle for gear wheel (°)	$\theta_{p2} = 90^{\circ} - \theta_{p1}$
m	Module (unitless)	To be determined from the
		AGMA standard table for tooth
		form
D_1 or D_2	Diameter of pinion and wheel respectively	mT_1 and mT_2 where m is the
	(mm)	module
d _e	Dedendum (mm)	To be determined from the
		AGMA standard table for tooth
		form
а	Addendum (mm)	To be determined from the
		AGMA standard table for tooth
		form
T_d	Tooth depth (mm)	To be determined from the
		AGMA standard table for tooth
		form
r _f	Fillet radius (mm)	To be determined from the
		AGMA standard table for tooth
-		torm
I _{th}	l ooth thickness (mm)	To be determined from the
		AGMA standard table for tooth
D or D	Doot diamotor of minion and goon respectively.	
D_{R1} of D_{R2}	(mm)	$D_1 - 2d_e$ and $D_2 - 2d_e$
L	Slant height of Pitch cone(mm)	$(D_1)^2 (D_2)^2$
		$\left \left(\frac{-1}{2}\right) + \left(\frac{-2}{2}\right)\right $
V	Valaaity of ninian or geer (m/a)	$\frac{\sqrt{2}}{N\pi D}$
v _{1 or 2}	velocity of philon of gear (III/s)	<u>60000</u>
		00000

Table 1.0.	Parameters/	symbols,	description	and	formula	used

3.2 Gear Teeth System

A tooth system is a standard given by the American Gear Manufacturers Association (AGMA) and the American National Institute (ANSI). It specifies relationship between addendum, dedendum, working depth, tooth thickness and pressure angle to attain interchangeability of gears of a tooth number but of the same pressure angle and pitch. Gear designers should be informed of advantages and disadvantages of the various

systems so that optimum tooth for a given design can be chosen. Basically there are four systems of gear teeth.

- i 14.5° Composite system
- ii 14.5° full involute system
- iii 20° full depth involute system
- iv 20° stub involute system

Table 2.0. Standard proportion of gear system by AGMA

S/N		14.5° Composite or full depth involute system	20° full depth involute system	20° stub involute system
1.	Addedum	1 m	1 m	0.8 m
2.	Dedendum	2.25 m	1.25 m	1 m
3.	Working depth	2 m	2 m	1.6 m
4.	Minimum total depth	2.25 m	2.25 m	1.80 m
5.	Tooth thickness	1.5708 m	1.5708 m	1.5708 m
6.	Minimum clearance	0.25 m	0.25 m	0.20 m
7.	Fillet radius at root	0.4 m	0.4 m	0.4 m

Source: Khurmi and Gupta (2005), note: m in the Table 2.0 stands for module

3.3 Lewis, Buckingham and Tregold Formula

These equations are applied to determine the tooth form, Bevelling factor, Tooth form factor and static strength. Static strength of bevel gear is obtained by determining the following parameters.

(a) Velocity factor C_v

Velocity factor C_v is determined first base on the level of cut of the gear.

$$C_v = \frac{4}{4+v}$$
 (For a carefully cut gear) (1)

$$C_v = \frac{3}{3+v}$$
 (For teeth cut by form cutter) (2)

$$C_v = \frac{6}{6+v}$$
 (For teeth generated with precision machines) (3)

where v is the velocity in m/s)

(b) Equivalent Number of Teeth T_E

Equivalent number of teeth for both Pinion and Gear wheel are obtained from the relations shown below respectively.

$$T_{E1} = T_1 \sec \theta_{p1} \tag{4a}$$

$$T_{E2} = T_2 sec\theta_{p2}$$
(4b)

(c) Tooth form factor Y'

Tooth form factor for pinion Y'_1 = 0.154
$$-\frac{0.912}{r_{E1}}$$
 (5a)

542

Tooth form factor for pinion Y'₂ = 0.154 $-\frac{0.912}{T_{E2}}$

(d) Bevel Factor B.F

B.F =
$$\frac{L-b}{L}$$
 ...6; where b is the face width given as $\frac{L}{3}$

(e) Tangential Tooth Load W_T

Tangential Load for pinion
$$W_{T1} = \sigma_{o1} \times C_V \times b \square mY'_1 \times B.F$$
 (7a)

Tangential Load for gear
$$W_{T2} = \sigma_{o2} \times C_V \times b \Box mY'_2 \times B.F$$
 (7b)

where σ_{o1} and σ_{o2} are allowable static stress of pinion wheel and allowable static stress of gear wheel respectively.

Design condition: if $W_{T1} > W_{T2}$, it means that pinion teeth are weaker than gear teeth.

3.4 Dynamic Load

Dynamic load is mathematically expressed as the summation of incremental load due to dynamics and tangential tooth load i.e

$$W_D = W_I + W_T \tag{8}$$

where
$$W_{I} = \frac{21\nu(bc + W_{T})}{21\nu + \sqrt{bc + W_{T}}}$$
 (9)

but c is a deformation factor expressed as
$$c = \frac{0.00535}{1/E_1 + 1/E_2}$$
 (10)

where E1 and E2 are the modulus of elasticity for pinion and gear respectively

Dynamic load of pinion wheel $W_{D1} = W_{11} + W_{T1}$ (11a)

Dynamic load of gear wheel $W_{D2} = W_{12} + W_{T2}$ (11b)

(f) Endurance Strength

Endurance strength for pinion wheel $W_{s1} = \sigma_{E1}b \exists mY_1$ ' x B.F (12a)

Endurance strength for gear wheel $W_{s2} = \sigma_{E2}b \exists m Y_2$ ' x B.F (12b)

where σ_{E1} and σ_{E2} are the endurance strength of the material used for pinion wear and gear wheel respectively.

(g) Wear

Maximum wear load of pinion wheel
$$W_{wl} = \frac{D_1 b Q k_1}{\cos \theta_{p_1}}$$
 (13a)

Maximum wear load of gear wheel
$$W_{w2} = \frac{D_2 b Q k_2}{\cos \theta_{p2}}$$
 (13b)

(5b)

but Ratio factor Q is given as $Q = \frac{2T_{E2}}{T_{E2}+T_{E1}}$ (14)

Load stress factor
$$K_1 = \frac{\sigma_{SE1}^2 \times 0.3}{1.4} (\frac{1}{E_1} + \frac{1}{E_2})$$
 (15a)

where σ_{ES1} is the surface endurance limit of pinion wheel

Load stress factor
$$K_2 = \frac{\sigma_{SE2}^2 \times 0.3}{1.4} (\frac{1}{E_1} + \frac{1}{E_2})$$
 (15b)

where σ_{ES2} is the surface endurance limit of gear wheel

Design condition: If W_{wl}>W_{T1} & W_{W2}>W_{T2} (design is satisfactory from the standpoint of wear).

3.5 Algorithm for the Design of Bevel Gear

- 1. Declare constants for different materials (using Table 1.0)
 - $\sigma_{\rm o}$ Allowable static strength
 - $\sigma_{\rm e}$ Allowable endurance strength
 - $\sigma_{\rm es}$ Allowable surface endurance strength
 - E- Young modulus
- 2. Select Materials and Gear Forms
 - I. Select materials
 - II. Select tooth form(14.5° full depth involute, 20° full depth involute, 20° stub)
- III. Select level of cut- (first class cut, carefully cut, precision cut
- IV. Select forms of gear loading (steady load, pulsating load, shock load)
- 3. Dimension of Bevel Gear
 - i. Select module from list of standard module module
 - ii. Enter the gear ratio
 - iii. Enter the number of teeth of the pinion gear
 - iv. Enter the ratio of slant height (l) of face width (b)
 - v. Determine the face width (b)
 - vi. Determine the pitch angle (θp_1) of the pinion $\theta_{p1} = \tan^{-1} \frac{1}{G}$ where G= velocity ratio/ gear ratio.
- vii. Determine the pitch angle(θp_2) of gear $\theta_{p2} = \theta_s \theta_{p1}$
- viii. Determine the number of teeth of the second wheel $T_2 = G \times T_1$
- ix. Determine the pitch diameter of gear ($D_G=m X T_G$)
- x. Determine the pinion pitch diameter ($D_P=m X T_P$)
- xi. Determine the tooth depth (a+d)
- xii. Determine root diameter (D_p-2d)
- xiii. Determine the outside diameter (D_P+2a)
- 4. Speed and Velocity
 - i. Enter velocity of pinion wheel in rpm
 - ii. Determine the velocity of the gear wheel (N_P/G)
 - iii. Determine the pitch line velocity 'v' in m/s
 - iv. Determine the velocity factor C_V

- 5. Gear Design using Tregolds, Buckingham & Lewis Formulas
 - i. Select the Allowable static stress
 - ii. Determine the equivalent tooth form $T_E = T \sec \theta$
 - iii. Determine the bevel factor. $B.F = \frac{L-\tilde{b}}{L}$
 - iv. Determine the tooth form factor(y¹)
 - v. Determine the static strength using lewis formula($W_T = (G_O C_V) b\pi my y^l B.F$)
- 6. Dynamic Load
 - i. Determine service factor C_s Determine increased load due to dynamic force $W_I = \frac{21V(bC + Wt)}{21v + \sqrt{bc + W_T}}$
 - ii. Determine the dynamic load $(W_D = W_T + W_I)$
- 7. Endurance Strength W_s
 - i. Select the endurance strength of the material selected (σ_e , table)
 - ii. Determine the endurance strength ($W_S = G_0 b \pi m y' \left(\frac{l-b}{l}\right)$) Conditions for endurance strength if

 $\begin{array}{l} W_S \geq 1.25 \ W_D \ (\text{Steady load}) \\ W_S \geq 1.35 \ W_D \ (\text{Pulsating load}) \\ W_S \geq 1.5 \ W_D \ (\text{Shock load}) \end{array}$

then design is satifactory from the standpoint of dynamics ELSE design is not satisfactory from the standpoint of dynamics

- 8. Wear Resistance/ Surface Endurance Strength
 - I. Determine young modulus of the pinion material (table)
 - II. Determine the surface endurance (G_{es}) from (table)
 - III. Determine the young modulus of gear ratio (table)
 - IV. Determine the stress factor $k = \frac{G_{es}^2 \sin\phi}{1.4} \left(\frac{1}{E_P} + \frac{1}{E_P}\right)$ V. Determine the limiting load for wear $W_W = \frac{D_P bQk}{\cos\phi_P}$

If $W_w > W_t$ then, design is satisfactory from the standpoint of wear Else design is not satisfactory from the standpoint of wear.

3.6 Algorithm Flowchart

The Algorithm flow chart in Fig. 3.0 shows the stepwise procedures for the design of bevel gear using the Bevel CAD.

Fig. 3.0. Algorithm flow chats

3.7 Software Development

The algorithm above was used to develop the software (Bevel CAD) used in the design of bevel gear. This was made possible by transforming the required formulas and data of bevel into a set of instruction codes. The codes written could validate the user inputs and respond by giving the user the necessary information. The software was designed using C# programming language and the Net Platform. The .Net Platform is a new and efficient platform from Microsoft cooperation that is invented to fill in the deficiency gap created by its predecessor platform like Win 32, MFC, Visual Basic, to name but few.

3.7.1 Reasons for using net platform

The .Net is preferred over other platforms due to the following reasons:

- 1. It is neutral language. Numerous languages can be employed to write programs on this platform. There are over 250 programming languages presently available. Microsoft created four out of this. They are C#, VB. Net, J#, C++ /CLI).
- 2. The platform is fully object oriented and this accounts for its unmatched ability in managing the automation of the most complex problems.
- 3. It is very secure. Security is planted at the core (most inner section) of the platform.

Concerning its features, C# inherited 70% of java, 5% of VB, 10% of C/C++, and it adds 15% new. The programs emulated good aspects of the suspect and became better software. This among other reasons lends credence for the selection C# for designing Bevel CAD Designer.

3.8 Main Window

The Bevel CAD main window as shown in Fig. 4.0 consists of four tabs as listed and described below:

- i. Material /Gear type
- ii. Dimensions
- iii. Speed and velocity
- iv. Gear design

Fig. 4.0. Bevel CAD main window

3.9 Material/Gear Type Interface

The environment shown in Fig. 5.0 pops-up and request for the gear and the pinion and input information (parameter).

The parameter requested for include the following:

- i <u>Material</u>- the material required include: cast iron of different grades, carbon steel, cast steel, aluminium steel, phosphor, bronze, alloy steel etc.
- ii <u>Select tooth form</u>- the various types of tooth forms which include : 20° stub, 20° involute, 14.5° involute
- iii <u>Level of cut</u>- the accuracy of cut can be selected which include the following : precision cut, ordinary cut, carefully cut
- iv <u>Gear loading</u>- this software makes available margins for the type of loading that the gear will be subjected. The gear loading types include pulsating load, steady load and shock load.

Wateria			ACCIECT AND	
Material/Grav.Typ	the Gair March	Maneral Gene Type fo	Prese West	
Delete Interest	Can Sterl 🔹	Select Augenrigh	Carbon Iteal	
Select Spoth For	14.5 Pail Depth Involute	Salach Tooth Parm	20199/JW -	
Level Of Cart		unidfae	Currinity Curr •	
Generating	Pulating Load •	Gentrealing	Pulating Load •	
	Gose Windows		Click, for see next Window,	

Fig. 5.0. Material/gear type environment

3.9 Dimension Window

The dimension window shows the interface of the inputs in the dimensions. The window is as shown in Fig. 6.0.

e precion		
- Select from PROFE		
Drive the Velocity Spin	4	
Entry Norther of Tasti-Entropy Trial	u	
tree site for majore	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Dev buit-inge	Tabl Ref. 4	
Amaz Phili Angle 4	Value of Addresizes + 4	
Gerfitz Anger 108	Value Ris Tedention + 1	
Nante al dear feeth +	April Daniela of Robert 37	
Transmood Room Wheel + 140	Apart Department Capital 182	
Daments of Line Wirel + 192	Vision Provident Statements of TELES	
minimitiertaans to	A1012	
Weinfram Weth- 12/16		
Autors to Ret Findos	Get Values Fox Onversion Nove to Next PVMDox	

Fig. 6.0. Bevel CAD dimension interface

The software requires for the following input dimensions which include.

- i **<u>Ratio of the face-width to the slant height:</u>** The slant height ratio to face-width value is demanded for. Examples of these values are (1/2, 1/2.3, 1/2.5, 1/3, 1/4).
- ii <u>Velocity Ratio:</u> Also known as the Gear Ratio is also an input parameter in the design of the bevel gear
- iii **Number of Pinion Teeth:** The software request for the number of the initiated pinion gear.
- iv Enter the value of the module: The module value is also required for the design of bevel gear.
- v Shaft angle: The software is capable of processing any form of bevel gear of different shaft angles of 90°, angular bevel gears (120°, 130°, 125°, 140 etc.).

Clicking on the tab 'get value for dimension' the computer does the calculations in the algorithm and displays value for the following parameter. Pitch angle of pinion, pitch angle of gear, Number of pinion Teeth, Number of Gear teeth, diameter of gear teeth, diameter of pinion teeth, value of fillet radius, tooth depth, value of addendum, value of dedendum, root diameter of pinion, root diameter of gear, etc.

There are 2 other tabs in this window, making it the 3 tabs in this window. Clicking the tab "return to the start window" takes the designer back to the start window. Clicking the tab" Move to Next Window" pops-up the "speed and velocity window".

3.10 Speed and Velocity Window

The window requires just the velocity of the pinion in rpm. The computer itself generates velocity of the gear wheel in rpm and the pitch line velocity of the pair of gears. The window also has 'move to the Next window' which takes the designer to the last phase called the 'gear design window'. Snap shot of the speed and velocity interface is shown in the Fig. 7.0.

All family and family	1010
Enter Facult Talanty in pre-	
Triducts of Gaucifications (1900	
Producer Handy (min) 1508	
Galagian (Mont)	
Adventor Nach Literature	

Fig. 7.0. Gear speed and velocity interface

3.11 Gear Design Window

This window is the main citadel of the software. The phase does not require for any input but uses the existing input to calculate and display the following gear characteristics.

- i Beam strength of pinion Tooth
- ii Beam strength of Gear tooth
- iii Deformation factor
- iv Increment load of pinion wheel
- v Dynamic load of pinion wheel
- vi Dynamic load of Gear wheel
- vii Endurance Strength of pinion wheel
- viii Endurance Strength of Gear wheel
- ix Maximum Wear load of pinion wheel
- x Maximum wear load of gear wheel
- xi Load stress factor for pinion wheel
- xii Load stress factor for gear wheel
- xiii Ratio Factor

A snapshot of this window is shown in Fig. 8.0.

Asys: Stangibild Percent Tatab. 847.7 Nankas Asys: Stangibild Cap Trunti. 1949.8 Nankas Deboreation: Partice 845.0 Normer Deboreation: Partice 1949.8 Normer Deboreation: Partice 1949.8 Normer Deboreation: Partice 1949.8 Normer Deboreation: Partice 1949.8 Normer Deboreation: Partice Network 1949.8 Normer Dynamic Lady of Cap Whal 1947.9 Normer Dynamic Lady of Cap Whal 1923.0 Normer Dubacoust Normer Was Lady of Cap Whal 192.0 Normer Lady Saad Partice Mont Whal 192.0 Normer Lady Saad Partice Mark 192.0 Normer	El Geor Design			COLUMN AND
Awys Heeghad Cop Tunch 1977 Nardan Data wadam Datas 1920 Narwa Data wadam Datas 1920 Narwa Hooven's Land of Cop What 1963 Narwa Datawata Land of Cop What 1963 Narwa Datawata Land of Cop What 1963 Narwa Datawata Land of Cop What 1922 Narka Datawata Land of Cop What 1923 Narka Datawata Storgh of Cop What 1923 Narka Matawata Storgh of Cop What 1923 Narka Habawata Storgh of Cop What 1924 Narka Habawata Storgh of Cop What 1947 Narka Habawata Storgh of	Ages theoget of Peace Toots	847	Nexture	
Defensition Nation 102.04 NVM Noncentral Land of Prese Media 102.04 Newton Inconnect Land of Prese Media 102.04 Newton Dynamic Land of Prese Media 102.02 Newton Dynamic Land of Deci Wedi 102.02 Newton Indonese Newgith of Deci Wedi 1040.02 Newton Nature Newgith of Deci Wedi 1024.02 Newton Nature Newgith Nation Newgith of Deci Wedi 1024.02 Newgith of Deci Wedi Nature Newgith Nation Newgith of Deci Wedi 1024.02 Newgith of Deci Wedi Nature Newgith Nation Newgith of Deci Wedi <td>Anyo: Desight of Gap Touth</td> <td>1947 8</td> <td>Neillas</td> <td></td>	Anyo: Desight of Gap Touth	1947 8	Neillas	
Nonewarn Lawl of Press Weel 1226 4P Namber Nonewarni Lawl of Cap Weel 3965 ft Ammer Dynamic Lawl of Cap Weel 1923 2 Namber Materian Weel 1923 2 Namber Materian Weel 1924 2 Namber Materian Weel 1942 4 Namber Materian Weel 1947 45 Namber Materian Weel 1947 4 Namber Materian Weel 1947 4 Namber Materian Materian Weel 197 4 Namber Materian Sacco Saccides 197 4 Namber Materian Saccides Saccides 197 4 Nameel Materian Saccides Saccides 197 4 Nameel	Deliveration Partice	\$5X.05	CONTR.	(思)
Inscenanty Load of Cap Ward 3985 ff Ammer Dynamic Load of Cap Ward 5923 ff Nanton Dynamic Load of Cap Ward 5923 ff Nanton Dynamic Load of Cap Ward 5923 ff Nanton Dodument Stergth of Cap Ward 5923 ff Nanton Indument Stergth of Cap Ward 7925 Nanton Indument Stergth of Cap Ward 7947 ff Nanton Indument Stergth of Cap Ward 7948 ff Nanton Indument Ward and of Cap Ward 5244 ff Nanton Load Stee Patter Ge Cap Ward 107 Nanton Load Stee Patter Ge Cap Ward 107 Nanton Stee Patter 215 Nanton	Note and Load of Press Wired	10261.48	claster.	
Drymens Land of Press Weel 1423.2 Ninktan Dynama Land of Dep XWeel 15273.11 Ninktan Badarama Dong the Diman Weel 15273.11 Ninktan Badarama Dong the Diman Weel 15273.11 Ninktan Badarama Dong the Diman Weel 15473.05 Ninktan Badarama Dong the Diman Weel 15473.05 Ninktan Badarama Dong the Diman Weel 15473.05 Ninktan Badarama Veer Land of Casa Weel 15481.05 Ninktan Badarama Veer Land of Casa Weel 15249.05 Ninktan Land Dong Pactor Go Casa Weel 107 Ninktan Badarama Factor Go Casa Weel 107 Ninktan Sates Factor 128 Ninktan	Incommental Local of Gene IV hand	19w5.81	diameter.	
Dynamic Load of Cale (New) 5223.11 Hearter Modurani Strength of Preser (New) 7224 Hearter Indurani Strength of Cale (New) 7447.05 Hearter Harman Kreight of Cale (New) 107 Hearter Anter Feature 215 Hearter	Dynamic Land of Press, Wheel	\$425.2	Nextur.	
Stadaward Storger Vibel 932 Nantas Badaward Storger Vibel 1942.05 Nantas Badaward Storger Vibel 1942.05 Nantas Hannam Viber Cast and and Storger Vibel 2349.0 Nantas Hannam Viber Cast and and Storger Vibel 2349.0 Nantas Laad Storger Schwink 107 Nimmal Laad Storger Schwink 107 Nimmal Satas Factor 215 Nimmal	Dynamic Load of Grant/Meel	15275.71	reader:	
Induces the photo TH42,65 Name Name TM611 Name Name TM613 Name Name TM614 Name	Streament Strength of Pinam Vilani	9826	(Nenton)	
Havenur Head Lad (Press) Maail 746.16 maxture Havenur Head Lad (Case Vited) 5249.0 Martin Lad Stee Pactor for Star Vited 107 Mineral Lad Stee Pactor for Star Vited 107 Mineral Sate Feature 215 Mineral	Industries Wength of Cele Villes?	11440.65	Nambae	
Harmon Versitzed of Case Vited \$2594.2 Names Load See Patter for Name 107 Nimmed Load Stee Patter for Case Vited 107 Nimmed Reste Patter 212	Haurrury Hass Load of Person Mosei	774e 18	manter	
Liad See Patter for Prior Week 107 All red. Liad See Patter for Sea Week 107 All red. Reter Fatter 212	Harmon Heartand of Gea Wheel	52548.6	Device .	
Statution function 107 Numeric Numeric Rates function 215 100	Load Stee Pattor for Pattor (Vise)	147	Altera.	
Ante funte 235	Lotat Shee Partor for Gap Wheel	1.07	Althing 1	
	Ratio Parties	2.15		
			CHANNES -	

Fig. 8.0. The gear design window

The outstanding characteristics about this software is its ability to suggest to designer the conditions of the gear been designed in term of

- i Stronger teeth among the pinion and the gear
- ii Endurance characteristic of the teeth under dynamics.
- iii Wear characteristic of the gear teeth under dynamic load.

Fig. 9.0 is a snapshot of condition suggested after a test designed using the Bevel CAD.

suble humanous theet with some one see	an .		
e Gear Design			10 B 10 1
Ream Strangth of Rinker Tooth	868.7	Neufar	
Beam Minetigth of Gear Toolh	1549-8	Service.	
Deformation Factor	551.08	Adver	Call R
Incoment Lond of Proof Vibes	10201.47	Neutron	
Incomental Load of Gay Wheel	13065.31	Nexton	
Dynamic Load of Amon Wheel	14125.2	Neines	
Dynamic Load of Gear Wheel	18215.11		
Engurance Thangth of Perior Villesi	9528		
Enduration through of Geo-Wheel	11440,65	Design is satisfactory from the point of wear	
Maximum Vola-Load of Amon Wied	3766.13		
Maximum View Loud of Gear Villes	52748.8	OK.	
Loud Stree Factor for Arton (Vited	107	NAMES.	
Load Herr Factor for Gran Wheel	107	M/mm2	
Ratio Factor	2,15		
	Calculate Ream St	Hogth	

Fig. 9.0. Design condition snap-shot

4 Results and Discussion

The software was tested by comparing its result with the manually computed result using the same examples. The software found an excellently close answer with that of the result obtained from the textbook and the algorithm test above. The software was again tested with other inputs from renowned textbooks and similar/close answers were also gotten. The little differences in the answers were due to errors due to approximation. See Table 3.0 for the results of the manually computed results and Bevel CAD results.

4.1 Design of Bevel Gear

Material used for both Pinion and Gear wheel =Cast iron grey, Carefully cut with stead loading. Velocity ratio/gear ratio = 1.25, module = 5 mm, Number of teeth in the Pinion wheel = 16, Angle of shaft = 90° , Speed of pinion wheel = 1100 rpm.

S/n	Parameters	Value from manual/hand	Values from bevel
		computation	CAD software
1	Pinion pitch angle	38.66°	39°
2	Gear pitch angle	51.34°	51°
3	Number of gear teeth	20	20
4	Diameter of pinion wheel	80 mm	80 mm
5	Diameter of gear wheel	100 mm	100 mm
6	Fillet radius	2 mm	2 mm
7	Face width	21.34 mm	21.34 mm
8	Total depth	11.25 mm	11.25 mm
9	Addendum	5 mm	5 mm
10	Dedendum	6.25 mm	6.25 mm
11	Root diameter of pinion	67.5 mm	67.5 mm

Table 3.0.	Comnarism	between	the results	
1 ant 5.0.	Comparism	Detmeen	the results	

Table 3.0 continue	d		
12	Root diameter of gear	87.5 mm	87.5 mm
13	Slant height	64.03	64.03
14	Tooth thickness	7.854 mm	7.854 mm
15	Velocity of gear	880 rpm	880 rpm
16	Pitch line velocity	4.61m/s	4.61m/s
17	Beam strength of pinion tooth	796.9N	796.06N
18	Beam strength of gear tooth	911.03N	916.98N
19	Deformation factor	302.28	302.27
20	Incremental load of pinion wheel	3856.42N	3855.52N
21	Incremental load of gear wheel	3905.18N	3902.25N
22	Dynamic load of pinion wheel	4653.32N	4651.59N
23	Dynamic load of gear wheel	4822.16N	4813.28N
24	Endurance strength of pinion wheel	2056.52N	2056N
25	Endurance strength of pinion wheel	2366.41N	2352.56N
26	Maximum wear load of pinion wheel	4027.6N	4002.59
27	Maximum wear load of gear wheel	6293.05N	6208.09N

Comparing the manually calculated results with the CAD result, the following inferences are made:

4.2 Accuracy in Calculations

Very close results were generated by both the manual calculation and that of the CAD software. The modeled calculation is believed to be more accurate because it uses uniform approximation in all its results.

4.2.1 Reduction in errors and time savings

In addition to the accuracy of the software, errors and mistakes in computations were drastically reduced. Care must be taken in the calculations as the designers are proned to mistakes due to complex calculations. Hand calculation takes a lot of time. From Table 3.0, it is observed that manual hand calculation takes average of 52 minutes to design a typical bevel gear but the same design takes just an average of 11 minutes when using Bevel CAD Designer software.

4.2.2 Suggestion of design conditions to designers

The modeled software also suggests the physical condition of the designed bevel gear using the computed result. These suggestions help designers to achieve better designs.

5 Conclusion and Recommendations

The required parameters for the design of bevel gears were identified which led to the formation of mathematical models. Algorithm was developed from the model which was later transformed to Bevel CAD software.

The developed software was evaluated by comparing its results by the manual mathematical computation and the results were found to be similar. Apart from the fact that the software saves time for the parametric design of bevel gear, it also suggests design conditions to assist bevel gear designers in decision making. Human errors are eliminated using the software.

It is recommended that the software be introduced to the tertiary institutions as a teaching aid to student on gear design and also designers should give proper considerations to design conditions suggested by the software to aid proper designs.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Hamrock Bernard J, Steven R Schmid, Bo OJ. Fundamentals of machine elements. 2nd Ed. New York: McGraw-Hill; 2005.
- [2] Han D, Xieeryazidan A. New modeling methods of spiral bevel and hypoid gear based on the CAD surface design features. Recent Advances in Computer Science; 2014.
- [3] Li J. Study on basic applied technology in the process of digitized manufacturing for spiral bevel and hypoid gear. Tianjin University; 2008.
- [4] Groover MP, Emory W, Zimmers JR. CAD/CAM computer aided design and manufacturing. Original U.S Ed. Prentice- Hall Inc: Englewood cliffs N.J; 1992.
- [5] Geotsch DL, Richman RL. Computer- aided design and drafting. Merrill Publishing Company. Columbus; 1990.
- [6] Antoniadis. Gear skiving–CAD simulation approach. Computer-Aided Design. 2012;44:611-616.
- [7] Zeng T. Design and manufacture of spiral bevel and hypoid and hypoid gear. Harbin Institute of Technology Press; 1989.
- [8] Erdman GA, Sandor NG. Mechanism design analysis and synthetic. 1st Ed. Hall of India private limited. 1984;1.
- [9] Bartłomiej S, Adam M. Method of spiral bevel gear tooth contact analysis performed in CAD. Aircraft Engineering and Aerospace Technology. 2013;85(6):467-74.
- [10] Julien A, Jérôme G, Emmanuel M, Marc S. A simple and robust method for spiral bevel gear generation and tooth contact analysis. International Journal on Interactive Design and Manufacturing. 2013;7(1):37-49.
- [11] Qi F, Ron D. Gleason Expert Manufacturing System (GEMS): Open a new era for digitized manufacturing of spiral bevel and hypoid and hypoid gear. World Manufacturing Engineering & Market. 2005;4:87-93.
- [12] Shingley JE, Mischke RC. Machine design fundamentals. 5th Ed. McGrawhill Inc.: NewYork; 1986.
- [13] Shuangxi X. A genuine face milling cutter geometric model for spiral bevel and hypoid gears. The International Journal of Advanced Manufacturing Technology. 2013;67:2619-26.

- [14] Anonymous. How stuff works. Accessed April 2nd 2015. Available: <u>http://science.howstuffworks.com/transport/engines-equipment/gear4.htm</u>
- [15] Khurmi RS, Gupta JK. Textbook on machine design. 5th Ed. S. Chand Eurasia Publishing House (PVT.) LTD.: Ram Nagar, New Delhi; 2005.

© 2015 Akinnuli et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://sciencedomain.org/review-history/9852